Step | Hyp | Ref
| Expression |
1 | | simp2l 1197 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝐴 ⊆ No
) |
2 | | simp3 1136 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝑈 ∈ 𝐴) |
3 | 1, 2 | sseldd 3918 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝑈 ∈ No
) |
4 | | nosupbnd1.1 |
. . . . . 6
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
5 | 4 | nosupno 33833 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
6 | 5 | 3ad2ant2 1132 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝑆 ∈ No
) |
7 | | nodmon 33780 |
. . . 4
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
8 | 6, 7 | syl 17 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → dom 𝑆 ∈ On) |
9 | | noreson 33790 |
. . 3
⊢ ((𝑈 ∈
No ∧ dom 𝑆
∈ On) → (𝑈
↾ dom 𝑆) ∈ No ) |
10 | 3, 8, 9 | syl2anc 583 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (𝑈 ↾ dom 𝑆) ∈ No
) |
11 | | dmres 5902 |
. . . 4
⊢ dom
(𝑈 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑈) |
12 | | inss1 4159 |
. . . 4
⊢ (dom
𝑆 ∩ dom 𝑈) ⊆ dom 𝑆 |
13 | 11, 12 | eqsstri 3951 |
. . 3
⊢ dom
(𝑈 ↾ dom 𝑆) ⊆ dom 𝑆 |
14 | 13 | a1i 11 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → dom (𝑈 ↾ dom 𝑆) ⊆ dom 𝑆) |
15 | | ssidd 3940 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → dom 𝑆 ⊆ dom 𝑆) |
16 | | iffalse 4465 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
17 | 4, 16 | syl5eq 2791 |
. . . . . . . . . . 11
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
18 | 17 | dmeqd 5803 |
. . . . . . . . . 10
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
19 | | iotaex 6398 |
. . . . . . . . . . 11
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ∈ V |
20 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
21 | 19, 20 | dmmpti 6561 |
. . . . . . . . . 10
⊢ dom
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
22 | 18, 21 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
23 | 22 | eleq2d 2824 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (ℎ ∈ dom 𝑆 ↔ ℎ ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
24 | | vex 3426 |
. . . . . . . . 9
⊢ ℎ ∈ V |
25 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑦 = ℎ → (𝑦 ∈ dom 𝑢 ↔ ℎ ∈ dom 𝑢)) |
26 | | suceq 6316 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ℎ → suc 𝑦 = suc ℎ) |
27 | 26 | reseq2d 5880 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ℎ → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc ℎ)) |
28 | 26 | reseq2d 5880 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ℎ → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc ℎ)) |
29 | 27, 28 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ℎ → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) |
30 | 29 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ℎ → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
31 | 30 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑦 = ℎ → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
32 | 25, 31 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑦 = ℎ → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
33 | 32 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑦 = ℎ → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
34 | | dmeq 5801 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
35 | 34 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑝 → (ℎ ∈ dom 𝑢 ↔ ℎ ∈ dom 𝑝)) |
36 | | breq2 5074 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑝 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝)) |
37 | 36 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝)) |
38 | | reseq1 5874 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc ℎ) = (𝑝 ↾ suc ℎ)) |
39 | 38 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ) ↔ (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) |
40 | 37, 39 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
41 | 40 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
42 | 35, 41 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑝 → ((ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) ↔ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
43 | 42 | cbvrexvw 3373 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
𝐴 (ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
44 | 33, 43 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑦 = ℎ → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
45 | 24, 44 | elab 3602 |
. . . . . . . 8
⊢ (ℎ ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
46 | 23, 45 | bitrdi 286 |
. . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (ℎ ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
47 | 46 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (ℎ ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
48 | | simpl1 1189 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
49 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
50 | | simprl 767 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑝 ∈ 𝐴) |
51 | | simprrl 777 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ℎ ∈ dom 𝑝) |
52 | | simprrr 778 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) |
53 | 4 | nosupres 33837 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑝 ∈ 𝐴 ∧ ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) → (𝑆 ↾ suc ℎ) = (𝑝 ↾ suc ℎ)) |
54 | 48, 49, 50, 51, 52, 53 | syl113anc 1380 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑆 ↾ suc ℎ) = (𝑝 ↾ suc ℎ)) |
55 | | simpl2l 1224 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝐴 ⊆ No
) |
56 | 55, 50 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑝 ∈ No
) |
57 | 3 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑈 ∈ No
) |
58 | | sltso 33806 |
. . . . . . . . . . . . . . 15
⊢ <s Or
No |
59 | | soasym 5525 |
. . . . . . . . . . . . . . 15
⊢ (( <s
Or No ∧ (𝑝 ∈ No
∧ 𝑈 ∈ No )) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝)) |
60 | 58, 59 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈
No ∧ 𝑈 ∈
No ) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝)) |
61 | 56, 57, 60 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝)) |
62 | | simpl3 1191 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑈 ∈ 𝐴) |
63 | | breq1 5073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑈 → (𝑣 <s 𝑝 ↔ 𝑈 <s 𝑝)) |
64 | 63 | notbid 317 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑈 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑈 <s 𝑝)) |
65 | | reseq1 5874 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑈 → (𝑣 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)) |
66 | 65 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑈 → ((𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ) ↔ (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ))) |
67 | 64, 66 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑈 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) ↔ (¬ 𝑈 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)))) |
68 | 67 | rspcv 3547 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ 𝐴 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) → (¬ 𝑈 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)))) |
69 | 62, 52, 68 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (¬ 𝑈 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ))) |
70 | 61, 69 | syld 47 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑝 <s 𝑈 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ))) |
71 | 70 | imp 406 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) ∧ 𝑝 <s 𝑈) → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)) |
72 | | nodmon 33780 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈
No → dom 𝑝
∈ On) |
73 | 56, 72 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → dom 𝑝 ∈ On) |
74 | | onelon 6276 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑝 ∈ On ∧ ℎ ∈ dom 𝑝) → ℎ ∈ On) |
75 | 73, 51, 74 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ℎ ∈ On) |
76 | | sucelon 7639 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ On ↔ suc ℎ ∈ On) |
77 | 75, 76 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → suc ℎ ∈ On) |
78 | | noreson 33790 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈
No ∧ suc ℎ
∈ On) → (𝑈
↾ suc ℎ) ∈ No ) |
79 | 57, 77, 78 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑈 ↾ suc ℎ) ∈ No
) |
80 | | sonr 5517 |
. . . . . . . . . . . . . 14
⊢ (( <s
Or No ∧ (𝑈 ↾ suc ℎ) ∈ No )
→ ¬ (𝑈 ↾ suc
ℎ) <s (𝑈 ↾ suc ℎ)) |
81 | 58, 80 | mpan 686 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ↾ suc ℎ) ∈ No
→ ¬ (𝑈 ↾ suc
ℎ) <s (𝑈 ↾ suc ℎ)) |
82 | 79, 81 | syl 17 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ (𝑈 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
83 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) ∧ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
84 | 71, 83 | eqnbrtrd 5088 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) ∧ 𝑝 <s 𝑈) → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
85 | 84 | ex 412 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑝 <s 𝑈 → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
86 | | sltres 33792 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈
No ∧ 𝑈 ∈
No ∧ suc ℎ ∈ On) → ((𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ) → 𝑝 <s 𝑈)) |
87 | 56, 57, 77, 86 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ((𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ) → 𝑝 <s 𝑈)) |
88 | 87 | con3d 152 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (¬ 𝑝 <s 𝑈 → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
89 | 85, 88 | pm2.61d 179 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
90 | 54, 89 | eqnbrtrd 5088 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
91 | 90 | rexlimdvaa 3213 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
92 | 47, 91 | sylbid 239 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (ℎ ∈ dom 𝑆 → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
93 | 92 | imp 406 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
94 | | nodmord 33783 |
. . . . . . . 8
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
95 | | ordsucss 7640 |
. . . . . . . 8
⊢ (Ord dom
𝑆 → (ℎ ∈ dom 𝑆 → suc ℎ ⊆ dom 𝑆)) |
96 | 6, 94, 95 | 3syl 18 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (ℎ ∈ dom 𝑆 → suc ℎ ⊆ dom 𝑆)) |
97 | 96 | imp 406 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → suc ℎ ⊆ dom 𝑆) |
98 | 97 | resabs1d 5911 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ((𝑈 ↾ dom 𝑆) ↾ suc ℎ) = (𝑈 ↾ suc ℎ)) |
99 | 98 | breq2d 5082 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ((𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ) ↔ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
100 | 93, 99 | mtbird 324 |
. . 3
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ¬ (𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ)) |
101 | 100 | ralrimiva 3107 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → ∀ℎ ∈ dom 𝑆 ¬ (𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ)) |
102 | | noresle 33827 |
. 2
⊢ ((((𝑈 ↾ dom 𝑆) ∈ No
∧ 𝑆 ∈ No ) ∧ (dom (𝑈 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ dom 𝑆 ⊆ dom 𝑆 ∧ ∀ℎ ∈ dom 𝑆 ¬ (𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ))) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆)) |
103 | 10, 6, 14, 15, 101, 102 | syl23anc 1375 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆)) |