MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iss Structured version   Visualization version   GIF version

Theorem iss 6009
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))

Proof of Theorem iss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . . . . . 9 𝑥 ∈ V
2 vex 3454 . . . . . . . . 9 𝑦 ∈ V
31, 2opeldm 5874 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
43a1i 11 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴))
5 ssel 3943 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ I ))
64, 5jcad 512 . . . . . 6 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )))
7 df-br 5111 . . . . . . . . 9 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
82ideq 5819 . . . . . . . . 9 (𝑥 I 𝑦𝑥 = 𝑦)
97, 8bitr3i 277 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
101eldm2 5868 . . . . . . . . . 10 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
11 opeq2 4841 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
1211eleq1d 2814 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1312biimprcd 250 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
149, 13biimtrid 242 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
155, 14sylcom 30 . . . . . . . . . . 11 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1615exlimdv 1933 . . . . . . . . . 10 (𝐴 ⊆ I → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1710, 16biimtrid 242 . . . . . . . . 9 (𝐴 ⊆ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1812imbi2d 340 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴) ↔ (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1917, 18syl5ibcom 245 . . . . . . . 8 (𝐴 ⊆ I → (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
209, 19biimtrid 242 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2120impcomd 411 . . . . . 6 (𝐴 ⊆ I → ((𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) → ⟨𝑥, 𝑦⟩ ∈ 𝐴))
226, 21impbid 212 . . . . 5 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )))
232opelresi 5961 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
2422, 23bitr4di 289 . . . 4 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
2524alrimivv 1928 . . 3 (𝐴 ⊆ I → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
26 reli 5792 . . . . 5 Rel I
27 relss 5747 . . . . 5 (𝐴 ⊆ I → (Rel I → Rel 𝐴))
2826, 27mpi 20 . . . 4 (𝐴 ⊆ I → Rel 𝐴)
29 relres 5979 . . . 4 Rel ( I ↾ dom 𝐴)
30 eqrel 5750 . . . 4 ((Rel 𝐴 ∧ Rel ( I ↾ dom 𝐴)) → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3128, 29, 30sylancl 586 . . 3 (𝐴 ⊆ I → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3225, 31mpbird 257 . 2 (𝐴 ⊆ I → 𝐴 = ( I ↾ dom 𝐴))
33 resss 5975 . . 3 ( I ↾ dom 𝐴) ⊆ I
34 sseq1 3975 . . 3 (𝐴 = ( I ↾ dom 𝐴) → (𝐴 ⊆ I ↔ ( I ↾ dom 𝐴) ⊆ I ))
3533, 34mpbiri 258 . 2 (𝐴 = ( I ↾ dom 𝐴) → 𝐴 ⊆ I )
3632, 35impbii 209 1 (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wss 3917  cop 4598   class class class wbr 5110   I cid 5535  dom cdm 5641  cres 5643  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-dm 5651  df-res 5653
This theorem is referenced by:  funcocnv2  6828  trust  24124
  Copyright terms: Public domain W3C validator