| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmireu | Structured version Visualization version GIF version | ||
| Description: Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
| lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
| lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| lmireu | ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 6 | lmif.m | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
| 7 | lmif.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | lmif.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 9 | lmicl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lmicl 28759 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lmilmi 28762 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐴)) = 𝐴) |
| 12 | 4 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐺 ∈ TarskiG) |
| 13 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐺DimTarskiG≥2) |
| 14 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐷 ∈ ran 𝐿) |
| 15 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝑏 ∈ 𝑃) | |
| 16 | 1, 2, 3, 12, 13, 6, 7, 14, 15 | lmilmi 28762 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘(𝑀‘𝑏)) = 𝑏) |
| 17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘𝑏) = 𝐴) | |
| 18 | 17 | fveq2d 6821 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘(𝑀‘𝑏)) = (𝑀‘𝐴)) |
| 19 | 16, 18 | eqtr3d 2768 | . . . 4 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝑏 = (𝑀‘𝐴)) |
| 20 | 19 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) |
| 21 | 20 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ 𝑃 ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) |
| 22 | fveqeq2 6826 | . . 3 ⊢ (𝑏 = (𝑀‘𝐴) → ((𝑀‘𝑏) = 𝐴 ↔ (𝑀‘(𝑀‘𝐴)) = 𝐴)) | |
| 23 | 22 | eqreu 3683 | . 2 ⊢ (((𝑀‘𝐴) ∈ 𝑃 ∧ (𝑀‘(𝑀‘𝐴)) = 𝐴 ∧ ∀𝑏 ∈ 𝑃 ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
| 24 | 10, 11, 21, 23 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 class class class wbr 5086 ran crn 5612 ‘cfv 6476 2c2 12175 Basecbs 17115 distcds 17165 TarskiGcstrkg 28400 DimTarskiG≥cstrkgld 28404 Itvcitv 28406 LineGclng 28407 lInvGclmi 28746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-trkgc 28421 df-trkgb 28422 df-trkgcb 28423 df-trkgld 28425 df-trkg 28426 df-cgrg 28484 df-leg 28556 df-mir 28626 df-rag 28667 df-perpg 28669 df-mid 28747 df-lmi 28748 |
| This theorem is referenced by: lmieq 28764 |
| Copyright terms: Public domain | W3C validator |