MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmireu Structured version   Visualization version   GIF version

Theorem lmireu 26749
Description: Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
Assertion
Ref Expression
lmireu (𝜑 → ∃!𝑏𝑃 (𝑀𝑏) = 𝐴)
Distinct variable groups:   𝐺,𝑏   𝑃,𝑏   𝜑,𝑏   𝐷,𝑏   𝐿,𝑏   𝐴,𝑏   𝑀,𝑏
Allowed substitution hints:   𝐼(𝑏)   (𝑏)

Proof of Theorem lmireu
StepHypRef Expression
1 ismid.p . . 3 𝑃 = (Base‘𝐺)
2 ismid.d . . 3 = (dist‘𝐺)
3 ismid.i . . 3 𝐼 = (Itv‘𝐺)
4 ismid.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 ismid.1 . . 3 (𝜑𝐺DimTarskiG≥2)
6 lmif.m . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
7 lmif.l . . 3 𝐿 = (LineG‘𝐺)
8 lmif.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
9 lmicl.1 . . 3 (𝜑𝐴𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9lmicl 26745 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
111, 2, 3, 4, 5, 6, 7, 8, 9lmilmi 26748 . 2 (𝜑 → (𝑀‘(𝑀𝐴)) = 𝐴)
124ad2antrr 726 . . . . . 6 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → 𝐺 ∈ TarskiG)
135ad2antrr 726 . . . . . 6 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → 𝐺DimTarskiG≥2)
148ad2antrr 726 . . . . . 6 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → 𝐷 ∈ ran 𝐿)
15 simplr 769 . . . . . 6 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → 𝑏𝑃)
161, 2, 3, 12, 13, 6, 7, 14, 15lmilmi 26748 . . . . 5 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → (𝑀‘(𝑀𝑏)) = 𝑏)
17 simpr 488 . . . . . 6 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → (𝑀𝑏) = 𝐴)
1817fveq2d 6691 . . . . 5 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → (𝑀‘(𝑀𝑏)) = (𝑀𝐴))
1916, 18eqtr3d 2776 . . . 4 (((𝜑𝑏𝑃) ∧ (𝑀𝑏) = 𝐴) → 𝑏 = (𝑀𝐴))
2019ex 416 . . 3 ((𝜑𝑏𝑃) → ((𝑀𝑏) = 𝐴𝑏 = (𝑀𝐴)))
2120ralrimiva 3097 . 2 (𝜑 → ∀𝑏𝑃 ((𝑀𝑏) = 𝐴𝑏 = (𝑀𝐴)))
22 fveqeq2 6696 . . 3 (𝑏 = (𝑀𝐴) → ((𝑀𝑏) = 𝐴 ↔ (𝑀‘(𝑀𝐴)) = 𝐴))
2322eqreu 3633 . 2 (((𝑀𝐴) ∈ 𝑃 ∧ (𝑀‘(𝑀𝐴)) = 𝐴 ∧ ∀𝑏𝑃 ((𝑀𝑏) = 𝐴𝑏 = (𝑀𝐴))) → ∃!𝑏𝑃 (𝑀𝑏) = 𝐴)
2410, 11, 21, 23syl3anc 1372 1 (𝜑 → ∃!𝑏𝑃 (𝑀𝑏) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3054  ∃!wreu 3056   class class class wbr 5040  ran crn 5536  cfv 6350  2c2 11784  Basecbs 16599  distcds 16690  TarskiGcstrkg 26389  DimTarskiGcstrkgld 26393  Itvcitv 26395  LineGclng 26396  lInvGclmi 26732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-oadd 8148  df-er 8333  df-map 8452  df-pm 8453  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-dju 9416  df-card 9454  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-2 11792  df-3 11793  df-n0 11990  df-xnn0 12062  df-z 12076  df-uz 12338  df-fz 12995  df-fzo 13138  df-hash 13796  df-word 13969  df-concat 14025  df-s1 14052  df-s2 14312  df-s3 14313  df-trkgc 26407  df-trkgb 26408  df-trkgcb 26409  df-trkgld 26411  df-trkg 26412  df-cgrg 26470  df-leg 26542  df-mir 26612  df-rag 26653  df-perpg 26655  df-mid 26733  df-lmi 26734
This theorem is referenced by:  lmieq  26750
  Copyright terms: Public domain W3C validator