| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmireu | Structured version Visualization version GIF version | ||
| Description: Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
| lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
| lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| lmireu | ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 6 | lmif.m | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
| 7 | lmif.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | lmif.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 9 | lmicl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lmicl 28784 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lmilmi 28787 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐴)) = 𝐴) |
| 12 | 4 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐺 ∈ TarskiG) |
| 13 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐺DimTarskiG≥2) |
| 14 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐷 ∈ ran 𝐿) |
| 15 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝑏 ∈ 𝑃) | |
| 16 | 1, 2, 3, 12, 13, 6, 7, 14, 15 | lmilmi 28787 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘(𝑀‘𝑏)) = 𝑏) |
| 17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘𝑏) = 𝐴) | |
| 18 | 17 | fveq2d 6835 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘(𝑀‘𝑏)) = (𝑀‘𝐴)) |
| 19 | 16, 18 | eqtr3d 2770 | . . . 4 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝑏 = (𝑀‘𝐴)) |
| 20 | 19 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) |
| 21 | 20 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ 𝑃 ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) |
| 22 | fveqeq2 6840 | . . 3 ⊢ (𝑏 = (𝑀‘𝐴) → ((𝑀‘𝑏) = 𝐴 ↔ (𝑀‘(𝑀‘𝐴)) = 𝐴)) | |
| 23 | 22 | eqreu 3684 | . 2 ⊢ (((𝑀‘𝐴) ∈ 𝑃 ∧ (𝑀‘(𝑀‘𝐴)) = 𝐴 ∧ ∀𝑏 ∈ 𝑃 ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
| 24 | 10, 11, 21, 23 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃!wreu 3345 class class class wbr 5095 ran crn 5622 ‘cfv 6489 2c2 12191 Basecbs 17127 distcds 17177 TarskiGcstrkg 28425 DimTarskiG≥cstrkgld 28429 Itvcitv 28431 LineGclng 28432 lInvGclmi 28771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-s2 14762 df-s3 14763 df-trkgc 28446 df-trkgb 28447 df-trkgcb 28448 df-trkgld 28450 df-trkg 28451 df-cgrg 28509 df-leg 28581 df-mir 28651 df-rag 28692 df-perpg 28694 df-mid 28772 df-lmi 28773 |
| This theorem is referenced by: lmieq 28789 |
| Copyright terms: Public domain | W3C validator |