| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmdup3 | Structured version Visualization version GIF version | ||
| Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| frmdup3.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| frmdup3.b | ⊢ 𝐵 = (Base‘𝐺) |
| frmdup3.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| Ref | Expression |
|---|---|
| frmdup3 | ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup3.m | . . 3 ⊢ 𝑀 = (freeMnd‘𝐼) | |
| 2 | frmdup3.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
| 4 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐺 ∈ Mnd) | |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐼 ∈ 𝑉) | |
| 6 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴:𝐼⟶𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | frmdup1 18847 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺)) |
| 8 | 4 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐺 ∈ Mnd) |
| 9 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 10 | 6 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐴:𝐼⟶𝐵) |
| 11 | frmdup3.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) | |
| 13 | 1, 2, 3, 8, 9, 10, 11, 12 | frmdup2 18848 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)) = (𝐴‘𝑦)) |
| 14 | 13 | mpteq2dva 5222 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
| 15 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 16 | 15, 2 | mhmf 18772 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
| 17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
| 18 | 11 | vrmdf 18841 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
| 19 | 18 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶Word 𝐼) |
| 20 | 1, 15 | frmdbas 18835 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (Base‘𝑀) = Word 𝐼) |
| 22 | 21 | feq3d 6703 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼)) |
| 23 | 19, 22 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶(Base‘𝑀)) |
| 24 | fcompt 7133 | . . . 4 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵 ∧ 𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) |
| 26 | 6 | feqmptd 6957 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴 = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
| 27 | 14, 25, 26 | 3eqtr4d 2779 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴) |
| 28 | 1, 2, 11 | frmdup3lem 18849 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚 ∘ 𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))) |
| 29 | 28 | expr 456 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
| 30 | 29 | ralrimiva 3133 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
| 31 | coeq1 5848 | . . . 4 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → (𝑚 ∘ 𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈)) | |
| 32 | 31 | eqeq1d 2736 | . . 3 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → ((𝑚 ∘ 𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴)) |
| 33 | 32 | eqreu 3717 | . 2 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| 34 | 7, 27, 30, 33 | syl3anc 1372 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 ↦ cmpt 5205 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Word cword 14535 Basecbs 17230 Σg cgsu 17457 Mndcmnd 18717 MndHom cmhm 18764 freeMndcfrmd 18830 varFMndcvrmd 18831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14353 df-word 14536 df-lsw 14584 df-concat 14592 df-s1 14617 df-substr 14662 df-pfx 14692 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-0g 17458 df-gsum 17459 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-frmd 18832 df-vrmd 18833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |