MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3 Structured version   Visualization version   GIF version

Theorem frmdup3 18850
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
frmdup3.m 𝑀 = (freeMnd‘𝐼)
frmdup3.b 𝐵 = (Base‘𝐺)
frmdup3.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdup3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑚,𝐺   𝑚,𝐼   𝑚,𝑀   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frmdup3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup3.m . . 3 𝑀 = (freeMnd‘𝐼)
2 frmdup3.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2736 . . 3 (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
4 simp1 1136 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐺 ∈ Mnd)
5 simp2 1137 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐼𝑉)
6 simp3 1138 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴:𝐼𝐵)
71, 2, 3, 4, 5, 6frmdup1 18847 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺))
84adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐺 ∈ Mnd)
95adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐼𝑉)
106adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐴:𝐼𝐵)
11 frmdup3.u . . . . 5 𝑈 = (varFMnd𝐼)
12 simpr 484 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
131, 2, 3, 8, 9, 10, 11, 12frmdup2 18848 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦)) = (𝐴𝑦))
1413mpteq2dva 5219 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))) = (𝑦𝐼 ↦ (𝐴𝑦)))
15 eqid 2736 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
1615, 2mhmf 18772 . . . . 5 ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
177, 16syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
1811vrmdf 18841 . . . . . 6 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
19183ad2ant2 1134 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶Word 𝐼)
201, 15frmdbas 18835 . . . . . . 7 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
21203ad2ant2 1134 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (Base‘𝑀) = Word 𝐼)
2221feq3d 6698 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼))
2319, 22mpbird 257 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝑀))
24 fcompt 7128 . . . 4 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
2517, 23, 24syl2anc 584 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
266feqmptd 6952 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴 = (𝑦𝐼 ↦ (𝐴𝑦)))
2714, 25, 263eqtr4d 2781 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴)
281, 2, 11frmdup3lem 18849 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
2928expr 456 . . 3 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
3029ralrimiva 3133 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
31 coeq1 5842 . . . 4 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → (𝑚𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈))
3231eqeq1d 2738 . . 3 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → ((𝑚𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴))
3332eqreu 3717 . 2 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
347, 27, 30, 33syl3anc 1373 1 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  ∃!wreu 3362  cmpt 5206  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  Word cword 14536  Basecbs 17233   Σg cgsu 17459  Mndcmnd 18717   MndHom cmhm 18764  freeMndcfrmd 18830  varFMndcvrmd 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-frmd 18832  df-vrmd 18833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator