| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmdup3 | Structured version Visualization version GIF version | ||
| Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| frmdup3.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| frmdup3.b | ⊢ 𝐵 = (Base‘𝐺) |
| frmdup3.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| Ref | Expression |
|---|---|
| frmdup3 | ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup3.m | . . 3 ⊢ 𝑀 = (freeMnd‘𝐼) | |
| 2 | frmdup3.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
| 4 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐺 ∈ Mnd) | |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐼 ∈ 𝑉) | |
| 6 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴:𝐼⟶𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | frmdup1 18769 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺)) |
| 8 | 4 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐺 ∈ Mnd) |
| 9 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 10 | 6 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐴:𝐼⟶𝐵) |
| 11 | frmdup3.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) | |
| 13 | 1, 2, 3, 8, 9, 10, 11, 12 | frmdup2 18770 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)) = (𝐴‘𝑦)) |
| 14 | 13 | mpteq2dva 5184 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
| 15 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 16 | 15, 2 | mhmf 18694 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
| 17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
| 18 | 11 | vrmdf 18763 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
| 19 | 18 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶Word 𝐼) |
| 20 | 1, 15 | frmdbas 18757 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (Base‘𝑀) = Word 𝐼) |
| 22 | 21 | feq3d 6636 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼)) |
| 23 | 19, 22 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶(Base‘𝑀)) |
| 24 | fcompt 7066 | . . . 4 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵 ∧ 𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) |
| 26 | 6 | feqmptd 6890 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴 = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
| 27 | 14, 25, 26 | 3eqtr4d 2776 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴) |
| 28 | 1, 2, 11 | frmdup3lem 18771 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚 ∘ 𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))) |
| 29 | 28 | expr 456 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
| 30 | 29 | ralrimiva 3124 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
| 31 | coeq1 5797 | . . . 4 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → (𝑚 ∘ 𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈)) | |
| 32 | 31 | eqeq1d 2733 | . . 3 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → ((𝑚 ∘ 𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴)) |
| 33 | 32 | eqreu 3688 | . 2 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| 34 | 7, 27, 30, 33 | syl3anc 1373 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 ↦ cmpt 5172 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Word cword 14417 Basecbs 17117 Σg cgsu 17341 Mndcmnd 18639 MndHom cmhm 18686 freeMndcfrmd 18752 varFMndcvrmd 18753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-word 14418 df-lsw 14467 df-concat 14475 df-s1 14501 df-substr 14546 df-pfx 14576 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-gsum 17343 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-frmd 18754 df-vrmd 18755 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |