![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmdup3 | Structured version Visualization version GIF version |
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
frmdup3.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
frmdup3.b | ⊢ 𝐵 = (Base‘𝐺) |
frmdup3.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
Ref | Expression |
---|---|
frmdup3 | ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdup3.m | . . 3 ⊢ 𝑀 = (freeMnd‘𝐼) | |
2 | frmdup3.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2799 | . . 3 ⊢ (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
4 | simp1 1167 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐺 ∈ Mnd) | |
5 | simp2 1168 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐼 ∈ 𝑉) | |
6 | simp3 1169 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴:𝐼⟶𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | frmdup1 17717 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺)) |
8 | 4 | adantr 473 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐺 ∈ Mnd) |
9 | 5 | adantr 473 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
10 | 6 | adantr 473 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐴:𝐼⟶𝐵) |
11 | frmdup3.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
12 | simpr 478 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) | |
13 | 1, 2, 3, 8, 9, 10, 11, 12 | frmdup2 17718 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)) = (𝐴‘𝑦)) |
14 | 13 | mpteq2dva 4937 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
15 | eqid 2799 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
16 | 15, 2 | mhmf 17655 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
18 | 11 | vrmdf 17711 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
19 | 18 | 3ad2ant2 1165 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶Word 𝐼) |
20 | 1, 15 | frmdbas 17705 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
21 | 20 | 3ad2ant2 1165 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (Base‘𝑀) = Word 𝐼) |
22 | 21 | feq3d 6243 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼)) |
23 | 19, 22 | mpbird 249 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶(Base‘𝑀)) |
24 | fcompt 6627 | . . . 4 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵 ∧ 𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) | |
25 | 17, 23, 24 | syl2anc 580 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) |
26 | 6 | feqmptd 6474 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴 = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
27 | 14, 25, 26 | 3eqtr4d 2843 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴) |
28 | 1, 2, 11 | frmdup3lem 17719 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚 ∘ 𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))) |
29 | 28 | expr 449 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
30 | 29 | ralrimiva 3147 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
31 | coeq1 5483 | . . . 4 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → (𝑚 ∘ 𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈)) | |
32 | 31 | eqeq1d 2801 | . . 3 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → ((𝑚 ∘ 𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴)) |
33 | 32 | eqreu 3594 | . 2 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
34 | 7, 27, 30, 33 | syl3anc 1491 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∃!wreu 3091 ↦ cmpt 4922 ∘ ccom 5316 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 Word cword 13534 Basecbs 16184 Σg cgsu 16416 Mndcmnd 17609 MndHom cmhm 17648 freeMndcfrmd 17700 varFMndcvrmd 17701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-n0 11581 df-xnn0 11653 df-z 11667 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-word 13535 df-lsw 13583 df-concat 13591 df-s1 13616 df-substr 13665 df-pfx 13714 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-0g 16417 df-gsum 16418 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-frmd 17702 df-vrmd 17703 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |