MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3 Structured version   Visualization version   GIF version

Theorem frmdup3 18035
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
frmdup3.m 𝑀 = (freeMnd‘𝐼)
frmdup3.b 𝐵 = (Base‘𝐺)
frmdup3.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdup3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑚,𝐺   𝑚,𝐼   𝑚,𝑀   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frmdup3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup3.m . . 3 𝑀 = (freeMnd‘𝐼)
2 frmdup3.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2824 . . 3 (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
4 simp1 1132 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐺 ∈ Mnd)
5 simp2 1133 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐼𝑉)
6 simp3 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴:𝐼𝐵)
71, 2, 3, 4, 5, 6frmdup1 18032 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺))
84adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐺 ∈ Mnd)
95adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐼𝑉)
106adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐴:𝐼𝐵)
11 frmdup3.u . . . . 5 𝑈 = (varFMnd𝐼)
12 simpr 487 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
131, 2, 3, 8, 9, 10, 11, 12frmdup2 18033 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦)) = (𝐴𝑦))
1413mpteq2dva 5164 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))) = (𝑦𝐼 ↦ (𝐴𝑦)))
15 eqid 2824 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
1615, 2mhmf 17964 . . . . 5 ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
177, 16syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
1811vrmdf 18026 . . . . . 6 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
19183ad2ant2 1130 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶Word 𝐼)
201, 15frmdbas 18020 . . . . . . 7 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
21203ad2ant2 1130 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (Base‘𝑀) = Word 𝐼)
2221feq3d 6504 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼))
2319, 22mpbird 259 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝑀))
24 fcompt 6898 . . . 4 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
2517, 23, 24syl2anc 586 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
266feqmptd 6736 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴 = (𝑦𝐼 ↦ (𝐴𝑦)))
2714, 25, 263eqtr4d 2869 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴)
281, 2, 11frmdup3lem 18034 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
2928expr 459 . . 3 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
3029ralrimiva 3185 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
31 coeq1 5731 . . . 4 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → (𝑚𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈))
3231eqeq1d 2826 . . 3 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → ((𝑚𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴))
3332eqreu 3723 . 2 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
347, 27, 30, 33syl3anc 1367 1 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  ∃!wreu 3143  cmpt 5149  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  Word cword 13864  Basecbs 16486   Σg cgsu 16717  Mndcmnd 17914   MndHom cmhm 17957  freeMndcfrmd 18015  varFMndcvrmd 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-gsum 16719  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-frmd 18017  df-vrmd 18018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator