| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmdup3 | Structured version Visualization version GIF version | ||
| Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| frmdup3.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| frmdup3.b | ⊢ 𝐵 = (Base‘𝐺) |
| frmdup3.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
| Ref | Expression |
|---|---|
| frmdup3 | ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup3.m | . . 3 ⊢ 𝑀 = (freeMnd‘𝐼) | |
| 2 | frmdup3.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
| 4 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐺 ∈ Mnd) | |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐼 ∈ 𝑉) | |
| 6 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴:𝐼⟶𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | frmdup1 18847 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺)) |
| 8 | 4 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐺 ∈ Mnd) |
| 9 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 10 | 6 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐴:𝐼⟶𝐵) |
| 11 | frmdup3.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) | |
| 13 | 1, 2, 3, 8, 9, 10, 11, 12 | frmdup2 18848 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)) = (𝐴‘𝑦)) |
| 14 | 13 | mpteq2dva 5219 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
| 15 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 16 | 15, 2 | mhmf 18772 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
| 17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
| 18 | 11 | vrmdf 18841 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
| 19 | 18 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶Word 𝐼) |
| 20 | 1, 15 | frmdbas 18835 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (Base‘𝑀) = Word 𝐼) |
| 22 | 21 | feq3d 6698 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼)) |
| 23 | 19, 22 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶(Base‘𝑀)) |
| 24 | fcompt 7128 | . . . 4 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵 ∧ 𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) |
| 26 | 6 | feqmptd 6952 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴 = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
| 27 | 14, 25, 26 | 3eqtr4d 2781 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴) |
| 28 | 1, 2, 11 | frmdup3lem 18849 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚 ∘ 𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))) |
| 29 | 28 | expr 456 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
| 30 | 29 | ralrimiva 3133 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
| 31 | coeq1 5842 | . . . 4 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → (𝑚 ∘ 𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈)) | |
| 32 | 31 | eqeq1d 2738 | . . 3 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → ((𝑚 ∘ 𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴)) |
| 33 | 32 | eqreu 3717 | . 2 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| 34 | 7, 27, 30, 33 | syl3anc 1373 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃!wreu 3362 ↦ cmpt 5206 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Word cword 14536 Basecbs 17233 Σg cgsu 17459 Mndcmnd 18717 MndHom cmhm 18764 freeMndcfrmd 18830 varFMndcvrmd 18831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-word 14537 df-lsw 14586 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-frmd 18832 df-vrmd 18833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |