![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmdup3 | Structured version Visualization version GIF version |
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
frmdup3.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
frmdup3.b | ⊢ 𝐵 = (Base‘𝐺) |
frmdup3.u | ⊢ 𝑈 = (varFMnd‘𝐼) |
Ref | Expression |
---|---|
frmdup3 | ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdup3.m | . . 3 ⊢ 𝑀 = (freeMnd‘𝐼) | |
2 | frmdup3.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) | |
4 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐺 ∈ Mnd) | |
5 | simp2 1136 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐼 ∈ 𝑉) | |
6 | simp3 1137 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴:𝐼⟶𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | frmdup1 18890 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺)) |
8 | 4 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐺 ∈ Mnd) |
9 | 5 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
10 | 6 | adantr 480 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐴:𝐼⟶𝐵) |
11 | frmdup3.u | . . . . 5 ⊢ 𝑈 = (varFMnd‘𝐼) | |
12 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) | |
13 | 1, 2, 3, 8, 9, 10, 11, 12 | frmdup2 18891 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)) = (𝐴‘𝑦)) |
14 | 13 | mpteq2dva 5248 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
15 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
16 | 15, 2 | mhmf 18815 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
17 | 7, 16 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵) |
18 | 11 | vrmdf 18884 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
19 | 18 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶Word 𝐼) |
20 | 1, 15 | frmdbas 18878 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
21 | 20 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (Base‘𝑀) = Word 𝐼) |
22 | 21 | feq3d 6724 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼)) |
23 | 19, 22 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝑈:𝐼⟶(Base‘𝑀)) |
24 | fcompt 7153 | . . . 4 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))):(Base‘𝑀)⟶𝐵 ∧ 𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) | |
25 | 17, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = (𝑦 ∈ 𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))‘(𝑈‘𝑦)))) |
26 | 6 | feqmptd 6977 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → 𝐴 = (𝑦 ∈ 𝐼 ↦ (𝐴‘𝑦))) |
27 | 14, 25, 26 | 3eqtr4d 2785 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴) |
28 | 1, 2, 11 | frmdup3lem 18892 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚 ∘ 𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))) |
29 | 28 | expr 456 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
30 | 29 | ralrimiva 3144 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) |
31 | coeq1 5871 | . . . 4 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → (𝑚 ∘ 𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈)) | |
32 | 31 | eqeq1d 2737 | . . 3 ⊢ (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) → ((𝑚 ∘ 𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴)) |
33 | 32 | eqreu 3738 | . 2 ⊢ (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚 ∘ 𝑈) = 𝐴 → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
34 | 7, 27, 30, 33 | syl3anc 1370 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃!wreu 3376 ↦ cmpt 5231 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Word cword 14549 Basecbs 17245 Σg cgsu 17487 Mndcmnd 18760 MndHom cmhm 18807 freeMndcfrmd 18873 varFMndcvrmd 18874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-gsum 17489 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-frmd 18875 df-vrmd 18876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |