MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Structured version   Visualization version   GIF version

Theorem uzwo3 12902
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 12871 allows the lower bound 𝐵 to be any real number. See also nnwo 12872 and nnwos 12874. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
uzwo3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem uzwo3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 renegcl 11485 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
21adantr 480 . . 3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → -𝐵 ∈ ℝ)
3 arch 12439 . . 3 (-𝐵 ∈ ℝ → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
42, 3syl 17 . 2 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
5 simplrl 776 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧})
6 simplrl 776 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℕ)
7 nnnegz 12532 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
86, 7syl 17 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℤ)
98zred 12638 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℝ)
10 simprl 770 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℤ)
1110zred 12638 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℝ)
12 simpll 766 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵 ∈ ℝ)
136nnred 12201 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℝ)
14 simplrr 777 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝐵 < 𝑛)
1512, 13, 14ltnegcon1d 11758 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝐵)
16 simprr 772 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵𝑧)
179, 12, 11, 15, 16ltletrd 11334 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝑧)
189, 11, 17ltled 11322 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛𝑧)
19 eluz 12807 . . . . . . . . . . 11 ((-𝑛 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
208, 10, 19syl2anc 584 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
2118, 20mpbird 257 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ (ℤ‘-𝑛))
2221expr 456 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑧 ∈ ℤ) → (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2322ralrimiva 3125 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
24 rabss 4035 . . . . . . 7 ({𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛) ↔ ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2523, 24sylibr 234 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
2625adantlr 715 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
275, 26sstrd 3957 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ (ℤ‘-𝑛))
28 simplrr 777 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ≠ ∅)
29 infssuzcl 12891 . . . 4 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3027, 28, 29syl2anc 584 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
31 infssuzle 12890 . . . . 5 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3227, 31sylan 580 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3332ralrimiva 3125 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)
34 breq2 5111 . . . . . . 7 (𝑦 = inf(𝐴, ℝ, < ) → (𝑥𝑦𝑥 ≤ inf(𝐴, ℝ, < )))
35 simprr 772 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → ∀𝑦𝐴 𝑥𝑦)
3630adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3734, 35, 36rspcdva 3589 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ≤ inf(𝐴, ℝ, < ))
3827adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ (ℤ‘-𝑛))
39 simprl 770 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥𝐴)
40 infssuzle 12890 . . . . . . 7 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑥𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑥)
4138, 39, 40syl2anc 584 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ≤ 𝑥)
42 uzssz 12814 . . . . . . . . . . 11 (ℤ‘-𝑛) ⊆ ℤ
43 zssre 12536 . . . . . . . . . . 11 ℤ ⊆ ℝ
4442, 43sstri 3956 . . . . . . . . . 10 (ℤ‘-𝑛) ⊆ ℝ
4527, 44sstrdi 3959 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ ℝ)
4645adantr 480 . . . . . . . 8 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ ℝ)
4746, 39sseldd 3947 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ∈ ℝ)
4845, 30sseldd 3947 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ ℝ)
4948adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ ℝ)
5047, 49letri3d 11316 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → (𝑥 = inf(𝐴, ℝ, < ) ↔ (𝑥 ≤ inf(𝐴, ℝ, < ) ∧ inf(𝐴, ℝ, < ) ≤ 𝑥)))
5137, 41, 50mpbir2and 713 . . . . 5 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 = inf(𝐴, ℝ, < ))
5251expr 456 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
5352ralrimiva 3125 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
54 breq1 5110 . . . . 5 (𝑥 = inf(𝐴, ℝ, < ) → (𝑥𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦))
5554ralbidv 3156 . . . 4 (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦))
5655eqreu 3700 . . 3 ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦 ∧ ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < ))) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
5730, 33, 53, 56syl3anc 1373 . 2 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
584, 57rexlimddv 3140 1 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  {crab 3405  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  infcinf 9392  cr 11067   < clt 11208  cle 11209  -cneg 11406  cn 12186  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794
This theorem is referenced by:  zmin  12903
  Copyright terms: Public domain W3C validator