MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Structured version   Visualization version   GIF version

Theorem uzwo3 12841
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 12810 allows the lower bound 𝐵 to be any real number. See also nnwo 12811 and nnwos 12813. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
uzwo3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem uzwo3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 renegcl 11424 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
21adantr 480 . . 3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → -𝐵 ∈ ℝ)
3 arch 12378 . . 3 (-𝐵 ∈ ℝ → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
42, 3syl 17 . 2 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
5 simplrl 776 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧})
6 simplrl 776 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℕ)
7 nnnegz 12471 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
86, 7syl 17 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℤ)
98zred 12577 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℝ)
10 simprl 770 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℤ)
1110zred 12577 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℝ)
12 simpll 766 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵 ∈ ℝ)
136nnred 12140 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℝ)
14 simplrr 777 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝐵 < 𝑛)
1512, 13, 14ltnegcon1d 11697 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝐵)
16 simprr 772 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵𝑧)
179, 12, 11, 15, 16ltletrd 11273 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝑧)
189, 11, 17ltled 11261 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛𝑧)
19 eluz 12746 . . . . . . . . . . 11 ((-𝑛 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
208, 10, 19syl2anc 584 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
2118, 20mpbird 257 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ (ℤ‘-𝑛))
2221expr 456 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑧 ∈ ℤ) → (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2322ralrimiva 3124 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
24 rabss 4017 . . . . . . 7 ({𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛) ↔ ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2523, 24sylibr 234 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
2625adantlr 715 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
275, 26sstrd 3940 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ (ℤ‘-𝑛))
28 simplrr 777 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ≠ ∅)
29 infssuzcl 12830 . . . 4 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3027, 28, 29syl2anc 584 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
31 infssuzle 12829 . . . . 5 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3227, 31sylan 580 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3332ralrimiva 3124 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)
34 breq2 5093 . . . . . . 7 (𝑦 = inf(𝐴, ℝ, < ) → (𝑥𝑦𝑥 ≤ inf(𝐴, ℝ, < )))
35 simprr 772 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → ∀𝑦𝐴 𝑥𝑦)
3630adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3734, 35, 36rspcdva 3573 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ≤ inf(𝐴, ℝ, < ))
3827adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ (ℤ‘-𝑛))
39 simprl 770 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥𝐴)
40 infssuzle 12829 . . . . . . 7 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑥𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑥)
4138, 39, 40syl2anc 584 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ≤ 𝑥)
42 uzssz 12753 . . . . . . . . . . 11 (ℤ‘-𝑛) ⊆ ℤ
43 zssre 12475 . . . . . . . . . . 11 ℤ ⊆ ℝ
4442, 43sstri 3939 . . . . . . . . . 10 (ℤ‘-𝑛) ⊆ ℝ
4527, 44sstrdi 3942 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ ℝ)
4645adantr 480 . . . . . . . 8 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ ℝ)
4746, 39sseldd 3930 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ∈ ℝ)
4845, 30sseldd 3930 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ ℝ)
4948adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ ℝ)
5047, 49letri3d 11255 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → (𝑥 = inf(𝐴, ℝ, < ) ↔ (𝑥 ≤ inf(𝐴, ℝ, < ) ∧ inf(𝐴, ℝ, < ) ≤ 𝑥)))
5137, 41, 50mpbir2and 713 . . . . 5 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 = inf(𝐴, ℝ, < ))
5251expr 456 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
5352ralrimiva 3124 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
54 breq1 5092 . . . . 5 (𝑥 = inf(𝐴, ℝ, < ) → (𝑥𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦))
5554ralbidv 3155 . . . 4 (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦))
5655eqreu 3683 . . 3 ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦 ∧ ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < ))) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
5730, 33, 53, 56syl3anc 1373 . 2 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
584, 57rexlimddv 3139 1 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344  {crab 3395  wss 3897  c0 4280   class class class wbr 5089  cfv 6481  infcinf 9325  cr 11005   < clt 11146  cle 11147  -cneg 11345  cn 12125  cz 12468  cuz 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733
This theorem is referenced by:  zmin  12842
  Copyright terms: Public domain W3C validator