MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Structured version   Visualization version   GIF version

Theorem uzwo3 12504
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 12473 allows the lower bound 𝐵 to be any real number. See also nnwo 12474 and nnwos 12476. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
uzwo3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem uzwo3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 renegcl 11106 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
21adantr 484 . . 3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → -𝐵 ∈ ℝ)
3 arch 12052 . . 3 (-𝐵 ∈ ℝ → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
42, 3syl 17 . 2 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
5 simplrl 777 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧})
6 simplrl 777 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℕ)
7 nnnegz 12144 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
86, 7syl 17 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℤ)
98zred 12247 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℝ)
10 simprl 771 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℤ)
1110zred 12247 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℝ)
12 simpll 767 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵 ∈ ℝ)
136nnred 11810 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℝ)
14 simplrr 778 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝐵 < 𝑛)
1512, 13, 14ltnegcon1d 11377 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝐵)
16 simprr 773 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵𝑧)
179, 12, 11, 15, 16ltletrd 10957 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝑧)
189, 11, 17ltled 10945 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛𝑧)
19 eluz 12417 . . . . . . . . . . 11 ((-𝑛 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
208, 10, 19syl2anc 587 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
2118, 20mpbird 260 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ (ℤ‘-𝑛))
2221expr 460 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑧 ∈ ℤ) → (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2322ralrimiva 3095 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
24 rabss 3971 . . . . . . 7 ({𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛) ↔ ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2523, 24sylibr 237 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
2625adantlr 715 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
275, 26sstrd 3897 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ (ℤ‘-𝑛))
28 simplrr 778 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ≠ ∅)
29 infssuzcl 12493 . . . 4 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3027, 28, 29syl2anc 587 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
31 infssuzle 12492 . . . . 5 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3227, 31sylan 583 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3332ralrimiva 3095 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)
34 breq2 5043 . . . . . . 7 (𝑦 = inf(𝐴, ℝ, < ) → (𝑥𝑦𝑥 ≤ inf(𝐴, ℝ, < )))
35 simprr 773 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → ∀𝑦𝐴 𝑥𝑦)
3630adantr 484 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3734, 35, 36rspcdva 3529 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ≤ inf(𝐴, ℝ, < ))
3827adantr 484 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ (ℤ‘-𝑛))
39 simprl 771 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥𝐴)
40 infssuzle 12492 . . . . . . 7 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑥𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑥)
4138, 39, 40syl2anc 587 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ≤ 𝑥)
42 uzssz 12424 . . . . . . . . . . 11 (ℤ‘-𝑛) ⊆ ℤ
43 zssre 12148 . . . . . . . . . . 11 ℤ ⊆ ℝ
4442, 43sstri 3896 . . . . . . . . . 10 (ℤ‘-𝑛) ⊆ ℝ
4527, 44sstrdi 3899 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ ℝ)
4645adantr 484 . . . . . . . 8 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ ℝ)
4746, 39sseldd 3888 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ∈ ℝ)
4845, 30sseldd 3888 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ ℝ)
4948adantr 484 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ ℝ)
5047, 49letri3d 10939 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → (𝑥 = inf(𝐴, ℝ, < ) ↔ (𝑥 ≤ inf(𝐴, ℝ, < ) ∧ inf(𝐴, ℝ, < ) ≤ 𝑥)))
5137, 41, 50mpbir2and 713 . . . . 5 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 = inf(𝐴, ℝ, < ))
5251expr 460 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
5352ralrimiva 3095 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
54 breq1 5042 . . . . 5 (𝑥 = inf(𝐴, ℝ, < ) → (𝑥𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦))
5554ralbidv 3108 . . . 4 (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦))
5655eqreu 3631 . . 3 ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦 ∧ ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < ))) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
5730, 33, 53, 56syl3anc 1373 . 2 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
584, 57rexlimddv 3200 1 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  ∃!wreu 3053  {crab 3055  wss 3853  c0 4223   class class class wbr 5039  cfv 6358  infcinf 9035  cr 10693   < clt 10832  cle 10833  -cneg 11028  cn 11795  cz 12141  cuz 12403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404
This theorem is referenced by:  zmin  12505
  Copyright terms: Public domain W3C validator