MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Structured version   Visualization version   GIF version

Theorem uzwo3 12926
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 12895 allows the lower bound 𝐵 to be any real number. See also nnwo 12896 and nnwos 12898. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
uzwo3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem uzwo3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 renegcl 11522 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
21adantr 480 . . 3 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → -𝐵 ∈ ℝ)
3 arch 12468 . . 3 (-𝐵 ∈ ℝ → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
42, 3syl 17 . 2 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃𝑛 ∈ ℕ -𝐵 < 𝑛)
5 simplrl 774 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧})
6 simplrl 774 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℕ)
7 nnnegz 12560 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
86, 7syl 17 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℤ)
98zred 12665 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 ∈ ℝ)
10 simprl 768 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℤ)
1110zred 12665 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ ℝ)
12 simpll 764 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵 ∈ ℝ)
136nnred 12226 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑛 ∈ ℝ)
14 simplrr 775 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝐵 < 𝑛)
1512, 13, 14ltnegcon1d 11793 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝐵)
16 simprr 770 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝐵𝑧)
179, 12, 11, 15, 16ltletrd 11373 . . . . . . . . . . 11 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛 < 𝑧)
189, 11, 17ltled 11361 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → -𝑛𝑧)
19 eluz 12835 . . . . . . . . . . 11 ((-𝑛 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
208, 10, 19syl2anc 583 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → (𝑧 ∈ (ℤ‘-𝑛) ↔ -𝑛𝑧))
2118, 20mpbird 257 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵𝑧)) → 𝑧 ∈ (ℤ‘-𝑛))
2221expr 456 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑧 ∈ ℤ) → (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2322ralrimiva 3138 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
24 rabss 4062 . . . . . . 7 ({𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛) ↔ ∀𝑧 ∈ ℤ (𝐵𝑧𝑧 ∈ (ℤ‘-𝑛)))
2523, 24sylibr 233 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
2625adantlr 712 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵𝑧} ⊆ (ℤ‘-𝑛))
275, 26sstrd 3985 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ (ℤ‘-𝑛))
28 simplrr 775 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ≠ ∅)
29 infssuzcl 12915 . . . 4 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3027, 28, 29syl2anc 583 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
31 infssuzle 12914 . . . . 5 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3227, 31sylan 579 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦)
3332ralrimiva 3138 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)
34 breq2 5143 . . . . . . 7 (𝑦 = inf(𝐴, ℝ, < ) → (𝑥𝑦𝑥 ≤ inf(𝐴, ℝ, < )))
35 simprr 770 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → ∀𝑦𝐴 𝑥𝑦)
3630adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ 𝐴)
3734, 35, 36rspcdva 3605 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ≤ inf(𝐴, ℝ, < ))
3827adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ (ℤ‘-𝑛))
39 simprl 768 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥𝐴)
40 infssuzle 12914 . . . . . . 7 ((𝐴 ⊆ (ℤ‘-𝑛) ∧ 𝑥𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑥)
4138, 39, 40syl2anc 583 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ≤ 𝑥)
42 uzssz 12842 . . . . . . . . . . 11 (ℤ‘-𝑛) ⊆ ℤ
43 zssre 12564 . . . . . . . . . . 11 ℤ ⊆ ℝ
4442, 43sstri 3984 . . . . . . . . . 10 (ℤ‘-𝑛) ⊆ ℝ
4527, 44sstrdi 3987 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ ℝ)
4645adantr 480 . . . . . . . 8 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝐴 ⊆ ℝ)
4746, 39sseldd 3976 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 ∈ ℝ)
4845, 30sseldd 3976 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ ℝ)
4948adantr 480 . . . . . . 7 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → inf(𝐴, ℝ, < ) ∈ ℝ)
5047, 49letri3d 11355 . . . . . 6 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → (𝑥 = inf(𝐴, ℝ, < ) ↔ (𝑥 ≤ inf(𝐴, ℝ, < ) ∧ inf(𝐴, ℝ, < ) ≤ 𝑥)))
5137, 41, 50mpbir2and 710 . . . . 5 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑥𝑦)) → 𝑥 = inf(𝐴, ℝ, < ))
5251expr 456 . . . 4 ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
5352ralrimiva 3138 . . 3 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < )))
54 breq1 5142 . . . . 5 (𝑥 = inf(𝐴, ℝ, < ) → (𝑥𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦))
5554ralbidv 3169 . . . 4 (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦))
5655eqreu 3718 . . 3 ((inf(𝐴, ℝ, < ) ∈ 𝐴 ∧ ∀𝑦𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦 ∧ ∀𝑥𝐴 (∀𝑦𝐴 𝑥𝑦𝑥 = inf(𝐴, ℝ, < ))) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
5730, 33, 53, 56syl3anc 1368 . 2 (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
584, 57rexlimddv 3153 1 ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  ∃!wreu 3366  {crab 3424  wss 3941  c0 4315   class class class wbr 5139  cfv 6534  infcinf 9433  cr 11106   < clt 11247  cle 11248  -cneg 11444  cn 12211  cz 12557  cuz 12821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822
This theorem is referenced by:  zmin  12927
  Copyright terms: Public domain W3C validator