MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3 Structured version   Visualization version   GIF version

Theorem frgpup3 19811
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup3.g 𝐺 = (freeGrp‘𝐼)
frgpup3.b 𝐵 = (Base‘𝐻)
frgpup3.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
frgpup3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐻   𝑚,𝐼   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frgpup3
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.b . . 3 𝐵 = (Base‘𝐻)
2 eqid 2735 . . 3 (invg𝐻) = (invg𝐻)
3 eqid 2735 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦))))
4 simp1 1135 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐻 ∈ Grp)
5 simp2 1136 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐼𝑉)
6 simp3 1137 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
7 eqid 2735 . . 3 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
8 eqid 2735 . . 3 ( ~FG𝐼) = ( ~FG𝐼)
9 frgpup3.g . . 3 𝐺 = (freeGrp‘𝐼)
10 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2735 . . 3 ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11frgpup1 19808 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻))
134adantr 480 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐻 ∈ Grp)
145adantr 480 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐼𝑉)
156adantr 480 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐹:𝐼𝐵)
16 frgpup3.u . . . . 5 𝑈 = (varFGrp𝐼)
17 simpr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝑘𝐼)
181, 2, 3, 13, 14, 15, 7, 8, 9, 10, 11, 16, 17frgpup2 19809 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘)) = (𝐹𝑘))
1918mpteq2dva 5248 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))) = (𝑘𝐼 ↦ (𝐹𝑘)))
2010, 1ghmf 19251 . . . . 5 (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
2112, 20syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
228, 16, 9, 10vrgpf 19801 . . . . 5 (𝐼𝑉𝑈:𝐼⟶(Base‘𝐺))
235, 22syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝐺))
24 fcompt 7153 . . . 4 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵𝑈:𝐼⟶(Base‘𝐺)) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
2521, 23, 24syl2anc 584 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
266feqmptd 6977 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
2719, 25, 263eqtr4d 2785 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹)
284adantr 480 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐻 ∈ Grp)
295adantr 480 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐼𝑉)
306adantr 480 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐹:𝐼𝐵)
31 simprl 771 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 ∈ (𝐺 GrpHom 𝐻))
32 simprr 773 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → (𝑚𝑈) = 𝐹)
331, 2, 3, 28, 29, 30, 7, 8, 9, 10, 11, 16, 31, 32frgpup3lem 19810 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))
3433expr 456 . . 3 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑚 ∈ (𝐺 GrpHom 𝐻)) → ((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
3534ralrimiva 3144 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
36 coeq1 5871 . . . 4 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → (𝑚𝑈) = (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈))
3736eqeq1d 2737 . . 3 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → ((𝑚𝑈) = 𝐹 ↔ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹))
3837eqreu 3738 . 2 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) ∧ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹 ∧ ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
3912, 27, 35, 38syl3anc 1370 1 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ∃!wreu 3376  c0 4339  ifcif 4531  cop 4637  cmpt 5231   I cid 5582   × cxp 5687  ran crn 5690  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  2oc2o 8499  [cec 8742  Word cword 14549  Basecbs 17245   Σg cgsu 17487  Grpcgrp 18964  invgcminusg 18965   GrpHom cghm 19243   ~FG cefg 19739  freeGrpcfrgp 19740  varFGrpcvrgp 19741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-splice 14785  df-reverse 14794  df-s2 14884  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-gsum 17489  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-frmd 18875  df-vrmd 18876  df-grp 18967  df-minusg 18968  df-ghm 19244  df-efg 19742  df-frgp 19743  df-vrgp 19744
This theorem is referenced by:  0frgp  19812  frgpcyg  21610
  Copyright terms: Public domain W3C validator