Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3 Structured version   Visualization version   GIF version

Theorem frgpup3 18896
 Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup3.g 𝐺 = (freeGrp‘𝐼)
frgpup3.b 𝐵 = (Base‘𝐻)
frgpup3.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
frgpup3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐻   𝑚,𝐼   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frgpup3
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.b . . 3 𝐵 = (Base‘𝐻)
2 eqid 2798 . . 3 (invg𝐻) = (invg𝐻)
3 eqid 2798 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦))))
4 simp1 1133 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐻 ∈ Grp)
5 simp2 1134 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐼𝑉)
6 simp3 1135 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
7 eqid 2798 . . 3 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
8 eqid 2798 . . 3 ( ~FG𝐼) = ( ~FG𝐼)
9 frgpup3.g . . 3 𝐺 = (freeGrp‘𝐼)
10 eqid 2798 . . 3 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2798 . . 3 ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11frgpup1 18893 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻))
134adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐻 ∈ Grp)
145adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐼𝑉)
156adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐹:𝐼𝐵)
16 frgpup3.u . . . . 5 𝑈 = (varFGrp𝐼)
17 simpr 488 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝑘𝐼)
181, 2, 3, 13, 14, 15, 7, 8, 9, 10, 11, 16, 17frgpup2 18894 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘)) = (𝐹𝑘))
1918mpteq2dva 5125 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))) = (𝑘𝐼 ↦ (𝐹𝑘)))
2010, 1ghmf 18354 . . . . 5 (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
2112, 20syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
228, 16, 9, 10vrgpf 18886 . . . . 5 (𝐼𝑉𝑈:𝐼⟶(Base‘𝐺))
235, 22syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝐺))
24 fcompt 6872 . . . 4 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵𝑈:𝐼⟶(Base‘𝐺)) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
2521, 23, 24syl2anc 587 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
266feqmptd 6708 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
2719, 25, 263eqtr4d 2843 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹)
284adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐻 ∈ Grp)
295adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐼𝑉)
306adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐹:𝐼𝐵)
31 simprl 770 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 ∈ (𝐺 GrpHom 𝐻))
32 simprr 772 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → (𝑚𝑈) = 𝐹)
331, 2, 3, 28, 29, 30, 7, 8, 9, 10, 11, 16, 31, 32frgpup3lem 18895 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))
3433expr 460 . . 3 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑚 ∈ (𝐺 GrpHom 𝐻)) → ((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
3534ralrimiva 3149 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
36 coeq1 5692 . . . 4 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → (𝑚𝑈) = (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈))
3736eqeq1d 2800 . . 3 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → ((𝑚𝑈) = 𝐹 ↔ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹))
3837eqreu 3668 . 2 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) ∧ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹 ∧ ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
3912, 27, 35, 38syl3anc 1368 1 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃!wreu 3108  ∅c0 4243  ifcif 4425  ⟨cop 4531   ↦ cmpt 5110   I cid 5424   × cxp 5517  ran crn 5520   ∘ ccom 5523  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ∈ cmpo 7137  2oc2o 8079  [cec 8270  Word cword 13857  Basecbs 16475   Σg cgsu 16706  Grpcgrp 18095  invgcminusg 18096   GrpHom cghm 18347   ~FG cefg 18824  freeGrpcfrgp 18825  varFGrpcvrgp 18826 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-gsum 16708  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-frmd 18006  df-vrmd 18007  df-grp 18098  df-minusg 18099  df-ghm 18348  df-efg 18827  df-frgp 18828  df-vrgp 18829 This theorem is referenced by:  0frgp  18897  frgpcyg  20265
 Copyright terms: Public domain W3C validator