MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3 Structured version   Visualization version   GIF version

Theorem frgpup3 19122
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup3.g 𝐺 = (freeGrp‘𝐼)
frgpup3.b 𝐵 = (Base‘𝐻)
frgpup3.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
frgpup3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐻   𝑚,𝐼   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frgpup3
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.b . . 3 𝐵 = (Base‘𝐻)
2 eqid 2736 . . 3 (invg𝐻) = (invg𝐻)
3 eqid 2736 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦))))
4 simp1 1138 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐻 ∈ Grp)
5 simp2 1139 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐼𝑉)
6 simp3 1140 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
7 eqid 2736 . . 3 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
8 eqid 2736 . . 3 ( ~FG𝐼) = ( ~FG𝐼)
9 frgpup3.g . . 3 𝐺 = (freeGrp‘𝐼)
10 eqid 2736 . . 3 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2736 . . 3 ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11frgpup1 19119 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻))
134adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐻 ∈ Grp)
145adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐼𝑉)
156adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐹:𝐼𝐵)
16 frgpup3.u . . . . 5 𝑈 = (varFGrp𝐼)
17 simpr 488 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝑘𝐼)
181, 2, 3, 13, 14, 15, 7, 8, 9, 10, 11, 16, 17frgpup2 19120 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘)) = (𝐹𝑘))
1918mpteq2dva 5135 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))) = (𝑘𝐼 ↦ (𝐹𝑘)))
2010, 1ghmf 18580 . . . . 5 (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
2112, 20syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
228, 16, 9, 10vrgpf 19112 . . . . 5 (𝐼𝑉𝑈:𝐼⟶(Base‘𝐺))
235, 22syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝐺))
24 fcompt 6926 . . . 4 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵𝑈:𝐼⟶(Base‘𝐺)) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
2521, 23, 24syl2anc 587 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
266feqmptd 6758 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
2719, 25, 263eqtr4d 2781 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹)
284adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐻 ∈ Grp)
295adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐼𝑉)
306adantr 484 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐹:𝐼𝐵)
31 simprl 771 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 ∈ (𝐺 GrpHom 𝐻))
32 simprr 773 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → (𝑚𝑈) = 𝐹)
331, 2, 3, 28, 29, 30, 7, 8, 9, 10, 11, 16, 31, 32frgpup3lem 19121 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))
3433expr 460 . . 3 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑚 ∈ (𝐺 GrpHom 𝐻)) → ((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
3534ralrimiva 3095 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
36 coeq1 5711 . . . 4 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → (𝑚𝑈) = (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈))
3736eqeq1d 2738 . . 3 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → ((𝑚𝑈) = 𝐹 ↔ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹))
3837eqreu 3631 . 2 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) ∧ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹 ∧ ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
3912, 27, 35, 38syl3anc 1373 1 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  ∃!wreu 3053  c0 4223  ifcif 4425  cop 4533  cmpt 5120   I cid 5439   × cxp 5534  ran crn 5537  ccom 5540  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  2oc2o 8174  [cec 8367  Word cword 14034  Basecbs 16666   Σg cgsu 16899  Grpcgrp 18319  invgcminusg 18320   GrpHom cghm 18573   ~FG cefg 19050  freeGrpcfrgp 19051  varFGrpcvrgp 19052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-fzo 13204  df-seq 13540  df-hash 13862  df-word 14035  df-lsw 14083  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-splice 14280  df-reverse 14289  df-s2 14378  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-0g 16900  df-gsum 16901  df-imas 16967  df-qus 16968  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-frmd 18230  df-vrmd 18231  df-grp 18322  df-minusg 18323  df-ghm 18574  df-efg 19053  df-frgp 19054  df-vrgp 19055
This theorem is referenced by:  0frgp  19123  frgpcyg  20492
  Copyright terms: Public domain W3C validator