MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3 Structured version   Visualization version   GIF version

Theorem frgpup3 19560
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup3.g 𝐺 = (freeGrp‘𝐼)
frgpup3.b 𝐵 = (Base‘𝐻)
frgpup3.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
frgpup3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
Distinct variable groups:   𝐵,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐻   𝑚,𝐼   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frgpup3
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.b . . 3 𝐵 = (Base‘𝐻)
2 eqid 2736 . . 3 (invg𝐻) = (invg𝐻)
3 eqid 2736 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦))))
4 simp1 1136 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐻 ∈ Grp)
5 simp2 1137 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐼𝑉)
6 simp3 1138 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
7 eqid 2736 . . 3 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
8 eqid 2736 . . 3 ( ~FG𝐼) = ( ~FG𝐼)
9 frgpup3.g . . 3 𝐺 = (freeGrp‘𝐼)
10 eqid 2736 . . 3 (Base‘𝐺) = (Base‘𝐺)
11 eqid 2736 . . 3 ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11frgpup1 19557 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻))
134adantr 481 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐻 ∈ Grp)
145adantr 481 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐼𝑉)
156adantr 481 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝐹:𝐼𝐵)
16 frgpup3.u . . . . 5 𝑈 = (varFGrp𝐼)
17 simpr 485 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → 𝑘𝐼)
181, 2, 3, 13, 14, 15, 7, 8, 9, 10, 11, 16, 17frgpup2 19558 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑘𝐼) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘)) = (𝐹𝑘))
1918mpteq2dva 5205 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))) = (𝑘𝐼 ↦ (𝐹𝑘)))
2010, 1ghmf 19012 . . . . 5 (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
2112, 20syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵)
228, 16, 9, 10vrgpf 19550 . . . . 5 (𝐼𝑉𝑈:𝐼⟶(Base‘𝐺))
235, 22syl 17 . . . 4 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝐺))
24 fcompt 7079 . . . 4 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩):(Base‘𝐺)⟶𝐵𝑈:𝐼⟶(Base‘𝐺)) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
2521, 23, 24syl2anc 584 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = (𝑘𝐼 ↦ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)‘(𝑈𝑘))))
266feqmptd 6910 . . 3 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → 𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
2719, 25, 263eqtr4d 2786 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹)
284adantr 481 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐻 ∈ Grp)
295adantr 481 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐼𝑉)
306adantr 481 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝐹:𝐼𝐵)
31 simprl 769 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 ∈ (𝐺 GrpHom 𝐻))
32 simprr 771 . . . . 5 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → (𝑚𝑈) = 𝐹)
331, 2, 3, 28, 29, 30, 7, 8, 9, 10, 11, 16, 31, 32frgpup3lem 19559 . . . 4 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ (𝑚 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑚𝑈) = 𝐹)) → 𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))
3433expr 457 . . 3 (((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) ∧ 𝑚 ∈ (𝐺 GrpHom 𝐻)) → ((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
3534ralrimiva 3143 . 2 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩)))
36 coeq1 5813 . . . 4 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → (𝑚𝑈) = (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈))
3736eqeq1d 2738 . . 3 (𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) → ((𝑚𝑈) = 𝐹 ↔ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹))
3837eqreu 3687 . 2 ((ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∈ (𝐺 GrpHom 𝐻) ∧ (ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩) ∘ 𝑈) = 𝐹 ∧ ∀𝑚 ∈ (𝐺 GrpHom 𝐻)((𝑚𝑈) = 𝐹𝑚 = ran (𝑔 ∈ ( I ‘Word (𝐼 × 2o)) ↦ ⟨[𝑔]( ~FG𝐼), (𝐻 Σg ((𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), ((invg𝐻)‘(𝐹𝑦)))) ∘ 𝑔))⟩))) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
3912, 27, 35, 38syl3anc 1371 1 ((𝐻 ∈ Grp ∧ 𝐼𝑉𝐹:𝐼𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚𝑈) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  ∃!wreu 3351  c0 4282  ifcif 4486  cop 4592  cmpt 5188   I cid 5530   × cxp 5631  ran crn 5634  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  2oc2o 8406  [cec 8646  Word cword 14402  Basecbs 17083   Σg cgsu 17322  Grpcgrp 18748  invgcminusg 18749   GrpHom cghm 19005   ~FG cefg 19488  freeGrpcfrgp 19489  varFGrpcvrgp 19490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-splice 14638  df-reverse 14647  df-s2 14737  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-0g 17323  df-gsum 17324  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-frmd 18659  df-vrmd 18660  df-grp 18751  df-minusg 18752  df-ghm 19006  df-efg 19491  df-frgp 19492  df-vrgp 19493
This theorem is referenced by:  0frgp  19561  frgpcyg  20980
  Copyright terms: Public domain W3C validator