Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgfcoeu Structured version   Visualization version   GIF version

Theorem symgfcoeu 33037
Description: Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypothesis
Ref Expression
symgfcoeu.g 𝐺 = (Base‘(SymGrp‘𝐷))
Assertion
Ref Expression
symgfcoeu ((𝐷𝑉𝑃𝐺𝑄𝐺) → ∃!𝑝𝐺 𝑄 = (𝑃𝑝))
Distinct variable groups:   𝐷,𝑝   𝐺,𝑝   𝑃,𝑝   𝑄,𝑝   𝑉,𝑝

Proof of Theorem symgfcoeu
StepHypRef Expression
1 eqid 2729 . . . . . 6 (SymGrp‘𝐷) = (SymGrp‘𝐷)
2 symgfcoeu.g . . . . . 6 𝐺 = (Base‘(SymGrp‘𝐷))
3 eqid 2729 . . . . . 6 (invg‘(SymGrp‘𝐷)) = (invg‘(SymGrp‘𝐷))
41, 2, 3symginv 19299 . . . . 5 (𝑃𝐺 → ((invg‘(SymGrp‘𝐷))‘𝑃) = 𝑃)
543ad2ant2 1134 . . . 4 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((invg‘(SymGrp‘𝐷))‘𝑃) = 𝑃)
61symggrp 19297 . . . . . 6 (𝐷𝑉 → (SymGrp‘𝐷) ∈ Grp)
763ad2ant1 1133 . . . . 5 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (SymGrp‘𝐷) ∈ Grp)
8 simp2 1137 . . . . 5 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑃𝐺)
92, 3grpinvcl 18884 . . . . 5 (((SymGrp‘𝐷) ∈ Grp ∧ 𝑃𝐺) → ((invg‘(SymGrp‘𝐷))‘𝑃) ∈ 𝐺)
107, 8, 9syl2anc 584 . . . 4 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((invg‘(SymGrp‘𝐷))‘𝑃) ∈ 𝐺)
115, 10eqeltrrd 2829 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑃𝐺)
12 simp3 1138 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑄𝐺)
13 eqid 2729 . . . . 5 (+g‘(SymGrp‘𝐷)) = (+g‘(SymGrp‘𝐷))
141, 2, 13symgov 19281 . . . 4 ((𝑃𝐺𝑄𝐺) → (𝑃(+g‘(SymGrp‘𝐷))𝑄) = (𝑃𝑄))
151, 2, 13symgcl 19282 . . . 4 ((𝑃𝐺𝑄𝐺) → (𝑃(+g‘(SymGrp‘𝐷))𝑄) ∈ 𝐺)
1614, 15eqeltrrd 2829 . . 3 ((𝑃𝐺𝑄𝐺) → (𝑃𝑄) ∈ 𝐺)
1711, 12, 16syl2anc 584 . 2 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃𝑄) ∈ 𝐺)
18 coass 6218 . . . 4 ((𝑃𝑃) ∘ 𝑄) = (𝑃 ∘ (𝑃𝑄))
191, 2symgbasf1o 19272 . . . . . 6 (𝑃𝐺𝑃:𝐷1-1-onto𝐷)
20 f1ococnv2 6795 . . . . . 6 (𝑃:𝐷1-1-onto𝐷 → (𝑃𝑃) = ( I ↾ 𝐷))
218, 19, 203syl 18 . . . . 5 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃𝑃) = ( I ↾ 𝐷))
2221coeq1d 5808 . . . 4 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((𝑃𝑃) ∘ 𝑄) = (( I ↾ 𝐷) ∘ 𝑄))
2318, 22eqtr3id 2778 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃 ∘ (𝑃𝑄)) = (( I ↾ 𝐷) ∘ 𝑄))
241, 2symgbasf1o 19272 . . . 4 (𝑄𝐺𝑄:𝐷1-1-onto𝐷)
25 f1of 6768 . . . 4 (𝑄:𝐷1-1-onto𝐷𝑄:𝐷𝐷)
26 fcoi2 6703 . . . 4 (𝑄:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
2712, 24, 25, 264syl 19 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
2823, 27eqtr2d 2765 . 2 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑄 = (𝑃 ∘ (𝑃𝑄)))
29 simpr 484 . . . . . 6 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → 𝑄 = (𝑃𝑝))
3029coeq2d 5809 . . . . 5 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → (𝑃𝑄) = (𝑃 ∘ (𝑃𝑝)))
31 coass 6218 . . . . . 6 ((𝑃𝑃) ∘ 𝑝) = (𝑃 ∘ (𝑃𝑝))
32 f1ococnv1 6797 . . . . . . . . 9 (𝑃:𝐷1-1-onto𝐷 → (𝑃𝑃) = ( I ↾ 𝐷))
338, 19, 323syl 18 . . . . . . . 8 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃𝑃) = ( I ↾ 𝐷))
3433coeq1d 5808 . . . . . . 7 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((𝑃𝑃) ∘ 𝑝) = (( I ↾ 𝐷) ∘ 𝑝))
3534ad2antrr 726 . . . . . 6 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → ((𝑃𝑃) ∘ 𝑝) = (( I ↾ 𝐷) ∘ 𝑝))
3631, 35eqtr3id 2778 . . . . 5 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → (𝑃 ∘ (𝑃𝑝)) = (( I ↾ 𝐷) ∘ 𝑝))
37 simplr 768 . . . . . 6 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → 𝑝𝐺)
381, 2symgbasf1o 19272 . . . . . 6 (𝑝𝐺𝑝:𝐷1-1-onto𝐷)
39 f1of 6768 . . . . . 6 (𝑝:𝐷1-1-onto𝐷𝑝:𝐷𝐷)
40 fcoi2 6703 . . . . . 6 (𝑝:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑝) = 𝑝)
4137, 38, 39, 404syl 19 . . . . 5 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → (( I ↾ 𝐷) ∘ 𝑝) = 𝑝)
4230, 36, 413eqtrrd 2769 . . . 4 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → 𝑝 = (𝑃𝑄))
4342ex 412 . . 3 (((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) → (𝑄 = (𝑃𝑝) → 𝑝 = (𝑃𝑄)))
4443ralrimiva 3121 . 2 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ∀𝑝𝐺 (𝑄 = (𝑃𝑝) → 𝑝 = (𝑃𝑄)))
45 coeq2 5805 . . . 4 (𝑝 = (𝑃𝑄) → (𝑃𝑝) = (𝑃 ∘ (𝑃𝑄)))
4645eqeq2d 2740 . . 3 (𝑝 = (𝑃𝑄) → (𝑄 = (𝑃𝑝) ↔ 𝑄 = (𝑃 ∘ (𝑃𝑄))))
4746eqreu 3691 . 2 (((𝑃𝑄) ∈ 𝐺𝑄 = (𝑃 ∘ (𝑃𝑄)) ∧ ∀𝑝𝐺 (𝑄 = (𝑃𝑝) → 𝑝 = (𝑃𝑄))) → ∃!𝑝𝐺 𝑄 = (𝑃𝑝))
4817, 28, 44, 47syl3anc 1373 1 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ∃!𝑝𝐺 𝑄 = (𝑃𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343   I cid 5517  ccnv 5622  cres 5625  ccom 5627  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  invgcminusg 18831  SymGrpcsymg 19266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-tset 17198  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-minusg 18834  df-symg 19267
This theorem is referenced by:  mdetpmtr1  33792
  Copyright terms: Public domain W3C validator