Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgfcoeu Structured version   Visualization version   GIF version

Theorem symgfcoeu 31351
Description: Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypothesis
Ref Expression
symgfcoeu.g 𝐺 = (Base‘(SymGrp‘𝐷))
Assertion
Ref Expression
symgfcoeu ((𝐷𝑉𝑃𝐺𝑄𝐺) → ∃!𝑝𝐺 𝑄 = (𝑃𝑝))
Distinct variable groups:   𝐷,𝑝   𝐺,𝑝   𝑃,𝑝   𝑄,𝑝   𝑉,𝑝

Proof of Theorem symgfcoeu
StepHypRef Expression
1 eqid 2738 . . . . . 6 (SymGrp‘𝐷) = (SymGrp‘𝐷)
2 symgfcoeu.g . . . . . 6 𝐺 = (Base‘(SymGrp‘𝐷))
3 eqid 2738 . . . . . 6 (invg‘(SymGrp‘𝐷)) = (invg‘(SymGrp‘𝐷))
41, 2, 3symginv 19010 . . . . 5 (𝑃𝐺 → ((invg‘(SymGrp‘𝐷))‘𝑃) = 𝑃)
543ad2ant2 1133 . . . 4 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((invg‘(SymGrp‘𝐷))‘𝑃) = 𝑃)
61symggrp 19008 . . . . . 6 (𝐷𝑉 → (SymGrp‘𝐷) ∈ Grp)
763ad2ant1 1132 . . . . 5 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (SymGrp‘𝐷) ∈ Grp)
8 simp2 1136 . . . . 5 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑃𝐺)
92, 3grpinvcl 18627 . . . . 5 (((SymGrp‘𝐷) ∈ Grp ∧ 𝑃𝐺) → ((invg‘(SymGrp‘𝐷))‘𝑃) ∈ 𝐺)
107, 8, 9syl2anc 584 . . . 4 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((invg‘(SymGrp‘𝐷))‘𝑃) ∈ 𝐺)
115, 10eqeltrrd 2840 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑃𝐺)
12 simp3 1137 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑄𝐺)
13 eqid 2738 . . . . 5 (+g‘(SymGrp‘𝐷)) = (+g‘(SymGrp‘𝐷))
141, 2, 13symgov 18991 . . . 4 ((𝑃𝐺𝑄𝐺) → (𝑃(+g‘(SymGrp‘𝐷))𝑄) = (𝑃𝑄))
151, 2, 13symgcl 18992 . . . 4 ((𝑃𝐺𝑄𝐺) → (𝑃(+g‘(SymGrp‘𝐷))𝑄) ∈ 𝐺)
1614, 15eqeltrrd 2840 . . 3 ((𝑃𝐺𝑄𝐺) → (𝑃𝑄) ∈ 𝐺)
1711, 12, 16syl2anc 584 . 2 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃𝑄) ∈ 𝐺)
18 coass 6169 . . . 4 ((𝑃𝑃) ∘ 𝑄) = (𝑃 ∘ (𝑃𝑄))
191, 2symgbasf1o 18982 . . . . . 6 (𝑃𝐺𝑃:𝐷1-1-onto𝐷)
20 f1ococnv2 6743 . . . . . 6 (𝑃:𝐷1-1-onto𝐷 → (𝑃𝑃) = ( I ↾ 𝐷))
218, 19, 203syl 18 . . . . 5 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃𝑃) = ( I ↾ 𝐷))
2221coeq1d 5770 . . . 4 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((𝑃𝑃) ∘ 𝑄) = (( I ↾ 𝐷) ∘ 𝑄))
2318, 22eqtr3id 2792 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃 ∘ (𝑃𝑄)) = (( I ↾ 𝐷) ∘ 𝑄))
241, 2symgbasf1o 18982 . . . . 5 (𝑄𝐺𝑄:𝐷1-1-onto𝐷)
25 f1of 6716 . . . . 5 (𝑄:𝐷1-1-onto𝐷𝑄:𝐷𝐷)
2612, 24, 253syl 18 . . . 4 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑄:𝐷𝐷)
27 fcoi2 6649 . . . 4 (𝑄:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
2826, 27syl 17 . . 3 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
2923, 28eqtr2d 2779 . 2 ((𝐷𝑉𝑃𝐺𝑄𝐺) → 𝑄 = (𝑃 ∘ (𝑃𝑄)))
30 simpr 485 . . . . . 6 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → 𝑄 = (𝑃𝑝))
3130coeq2d 5771 . . . . 5 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → (𝑃𝑄) = (𝑃 ∘ (𝑃𝑝)))
32 coass 6169 . . . . . 6 ((𝑃𝑃) ∘ 𝑝) = (𝑃 ∘ (𝑃𝑝))
33 f1ococnv1 6745 . . . . . . . . 9 (𝑃:𝐷1-1-onto𝐷 → (𝑃𝑃) = ( I ↾ 𝐷))
348, 19, 333syl 18 . . . . . . . 8 ((𝐷𝑉𝑃𝐺𝑄𝐺) → (𝑃𝑃) = ( I ↾ 𝐷))
3534coeq1d 5770 . . . . . . 7 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ((𝑃𝑃) ∘ 𝑝) = (( I ↾ 𝐷) ∘ 𝑝))
3635ad2antrr 723 . . . . . 6 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → ((𝑃𝑃) ∘ 𝑝) = (( I ↾ 𝐷) ∘ 𝑝))
3732, 36eqtr3id 2792 . . . . 5 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → (𝑃 ∘ (𝑃𝑝)) = (( I ↾ 𝐷) ∘ 𝑝))
38 simplr 766 . . . . . . 7 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → 𝑝𝐺)
391, 2symgbasf1o 18982 . . . . . . 7 (𝑝𝐺𝑝:𝐷1-1-onto𝐷)
40 f1of 6716 . . . . . . 7 (𝑝:𝐷1-1-onto𝐷𝑝:𝐷𝐷)
4138, 39, 403syl 18 . . . . . 6 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → 𝑝:𝐷𝐷)
42 fcoi2 6649 . . . . . 6 (𝑝:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑝) = 𝑝)
4341, 42syl 17 . . . . 5 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → (( I ↾ 𝐷) ∘ 𝑝) = 𝑝)
4431, 37, 433eqtrrd 2783 . . . 4 ((((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) ∧ 𝑄 = (𝑃𝑝)) → 𝑝 = (𝑃𝑄))
4544ex 413 . . 3 (((𝐷𝑉𝑃𝐺𝑄𝐺) ∧ 𝑝𝐺) → (𝑄 = (𝑃𝑝) → 𝑝 = (𝑃𝑄)))
4645ralrimiva 3103 . 2 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ∀𝑝𝐺 (𝑄 = (𝑃𝑝) → 𝑝 = (𝑃𝑄)))
47 coeq2 5767 . . . 4 (𝑝 = (𝑃𝑄) → (𝑃𝑝) = (𝑃 ∘ (𝑃𝑄)))
4847eqeq2d 2749 . . 3 (𝑝 = (𝑃𝑄) → (𝑄 = (𝑃𝑝) ↔ 𝑄 = (𝑃 ∘ (𝑃𝑄))))
4948eqreu 3664 . 2 (((𝑃𝑄) ∈ 𝐺𝑄 = (𝑃 ∘ (𝑃𝑄)) ∧ ∀𝑝𝐺 (𝑄 = (𝑃𝑝) → 𝑝 = (𝑃𝑄))) → ∃!𝑝𝐺 𝑄 = (𝑃𝑝))
5017, 29, 46, 49syl3anc 1370 1 ((𝐷𝑉𝑃𝐺𝑄𝐺) → ∃!𝑝𝐺 𝑄 = (𝑃𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066   I cid 5488  ccnv 5588  cres 5591  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  invgcminusg 18578  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-symg 18975
This theorem is referenced by:  mdetpmtr1  31773
  Copyright terms: Public domain W3C validator