| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirreu | Structured version Visualization version GIF version | ||
| Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirreu | ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 28595 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirmir 28596 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
| 12 | 6 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐺 ∈ TarskiG) |
| 13 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐴 ∈ 𝑃) |
| 14 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 ∈ 𝑃) | |
| 15 | 1, 2, 3, 4, 5, 12, 13, 8, 14 | mirmir 28596 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = 𝑎) |
| 16 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘𝑎) = 𝐵) | |
| 17 | 16 | fveq2d 6865 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = (𝑀‘𝐵)) |
| 18 | 15, 17 | eqtr3d 2767 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 = (𝑀‘𝐵)) |
| 19 | 18 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
| 20 | 19 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
| 21 | fveqeq2 6870 | . . 3 ⊢ (𝑎 = (𝑀‘𝐵) → ((𝑀‘𝑎) = 𝐵 ↔ (𝑀‘(𝑀‘𝐵)) = 𝐵)) | |
| 22 | 21 | eqreu 3703 | . 2 ⊢ (((𝑀‘𝐵) ∈ 𝑃 ∧ (𝑀‘(𝑀‘𝐵)) = 𝐵 ∧ ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| 23 | 10, 11, 20, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃!wreu 3354 ‘cfv 6514 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 pInvGcmir 28586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 df-mir 28587 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |