| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirreu | Structured version Visualization version GIF version | ||
| Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirreu | ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 28659 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirmir 28660 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
| 12 | 6 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐺 ∈ TarskiG) |
| 13 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐴 ∈ 𝑃) |
| 14 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 ∈ 𝑃) | |
| 15 | 1, 2, 3, 4, 5, 12, 13, 8, 14 | mirmir 28660 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = 𝑎) |
| 16 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘𝑎) = 𝐵) | |
| 17 | 16 | fveq2d 6835 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = (𝑀‘𝐵)) |
| 18 | 15, 17 | eqtr3d 2770 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 = (𝑀‘𝐵)) |
| 19 | 18 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
| 20 | 19 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
| 21 | fveqeq2 6840 | . . 3 ⊢ (𝑎 = (𝑀‘𝐵) → ((𝑀‘𝑎) = 𝐵 ↔ (𝑀‘(𝑀‘𝐵)) = 𝐵)) | |
| 22 | 21 | eqreu 3684 | . 2 ⊢ (((𝑀‘𝐵) ∈ 𝑃 ∧ (𝑀‘(𝑀‘𝐵)) = 𝐵 ∧ ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| 23 | 10, 11, 20, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃!wreu 3345 ‘cfv 6489 Basecbs 17127 distcds 17177 TarskiGcstrkg 28425 Itvcitv 28431 LineGclng 28432 pInvGcmir 28650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-trkgc 28446 df-trkgb 28447 df-trkgcb 28448 df-trkg 28451 df-mir 28651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |