| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirreu | Structured version Visualization version GIF version | ||
| Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirreu | ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 28634 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirmir 28635 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
| 12 | 6 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐺 ∈ TarskiG) |
| 13 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐴 ∈ 𝑃) |
| 14 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 ∈ 𝑃) | |
| 15 | 1, 2, 3, 4, 5, 12, 13, 8, 14 | mirmir 28635 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = 𝑎) |
| 16 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘𝑎) = 𝐵) | |
| 17 | 16 | fveq2d 6821 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = (𝑀‘𝐵)) |
| 18 | 15, 17 | eqtr3d 2768 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 = (𝑀‘𝐵)) |
| 19 | 18 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
| 20 | 19 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
| 21 | fveqeq2 6826 | . . 3 ⊢ (𝑎 = (𝑀‘𝐵) → ((𝑀‘𝑎) = 𝐵 ↔ (𝑀‘(𝑀‘𝐵)) = 𝐵)) | |
| 22 | 21 | eqreu 3683 | . 2 ⊢ (((𝑀‘𝐵) ∈ 𝑃 ∧ (𝑀‘(𝑀‘𝐵)) = 𝐵 ∧ ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| 23 | 10, 11, 20, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 ‘cfv 6476 Basecbs 17115 distcds 17165 TarskiGcstrkg 28400 Itvcitv 28406 LineGclng 28407 pInvGcmir 28625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-trkgc 28421 df-trkgb 28422 df-trkgcb 28423 df-trkg 28426 df-mir 28626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |