MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirreu Structured version   Visualization version   GIF version

Theorem mirreu 26709
Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirreu (𝜑 → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
Distinct variable groups:   𝐵,𝑎   𝑀,𝑎   𝑃,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝑆(𝑎)   𝐺(𝑎)   𝐼(𝑎)   𝐿(𝑎)   (𝑎)

Proof of Theorem mirreu
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mirmir.b . . 3 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 26706 . 2 (𝜑 → (𝑀𝐵) ∈ 𝑃)
111, 2, 3, 4, 5, 6, 7, 8, 9mirmir 26707 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
126ad2antrr 726 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝐺 ∈ TarskiG)
137ad2antrr 726 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝐴𝑃)
14 simplr 769 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝑎𝑃)
151, 2, 3, 4, 5, 12, 13, 8, 14mirmir 26707 . . . . 5 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀‘(𝑀𝑎)) = 𝑎)
16 simpr 488 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀𝑎) = 𝐵)
1716fveq2d 6699 . . . . 5 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀‘(𝑀𝑎)) = (𝑀𝐵))
1815, 17eqtr3d 2773 . . . 4 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝑎 = (𝑀𝐵))
1918ex 416 . . 3 ((𝜑𝑎𝑃) → ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵)))
2019ralrimiva 3095 . 2 (𝜑 → ∀𝑎𝑃 ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵)))
21 fveqeq2 6704 . . 3 (𝑎 = (𝑀𝐵) → ((𝑀𝑎) = 𝐵 ↔ (𝑀‘(𝑀𝐵)) = 𝐵))
2221eqreu 3631 . 2 (((𝑀𝐵) ∈ 𝑃 ∧ (𝑀‘(𝑀𝐵)) = 𝐵 ∧ ∀𝑎𝑃 ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵))) → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
2310, 11, 20, 22syl3anc 1373 1 (𝜑 → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051  ∃!wreu 3053  cfv 6358  Basecbs 16666  distcds 16758  TarskiGcstrkg 26475  Itvcitv 26481  LineGclng 26482  pInvGcmir 26697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-trkgc 26493  df-trkgb 26494  df-trkgcb 26495  df-trkg 26498  df-mir 26698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator