Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirreu | Structured version Visualization version GIF version |
Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirreu | ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 27311 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirmir 27312 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
12 | 6 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐺 ∈ TarskiG) |
13 | 7 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝐴 ∈ 𝑃) |
14 | simplr 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 ∈ 𝑃) | |
15 | 1, 2, 3, 4, 5, 12, 13, 8, 14 | mirmir 27312 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = 𝑎) |
16 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘𝑎) = 𝐵) | |
17 | 16 | fveq2d 6829 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → (𝑀‘(𝑀‘𝑎)) = (𝑀‘𝐵)) |
18 | 15, 17 | eqtr3d 2778 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ (𝑀‘𝑎) = 𝐵) → 𝑎 = (𝑀‘𝐵)) |
19 | 18 | ex 413 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
20 | 19 | ralrimiva 3139 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) |
21 | fveqeq2 6834 | . . 3 ⊢ (𝑎 = (𝑀‘𝐵) → ((𝑀‘𝑎) = 𝐵 ↔ (𝑀‘(𝑀‘𝐵)) = 𝐵)) | |
22 | 21 | eqreu 3675 | . 2 ⊢ (((𝑀‘𝐵) ∈ 𝑃 ∧ (𝑀‘(𝑀‘𝐵)) = 𝐵 ∧ ∀𝑎 ∈ 𝑃 ((𝑀‘𝑎) = 𝐵 → 𝑎 = (𝑀‘𝐵))) → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
23 | 10, 11, 20, 22 | syl3anc 1370 | 1 ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃!wreu 3347 ‘cfv 6479 Basecbs 17009 distcds 17068 TarskiGcstrkg 27077 Itvcitv 27083 LineGclng 27084 pInvGcmir 27302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-trkgc 27098 df-trkgb 27099 df-trkgcb 27100 df-trkg 27103 df-mir 27303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |