MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirreu Structured version   Visualization version   GIF version

Theorem mirreu 27025
Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirreu (𝜑 → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
Distinct variable groups:   𝐵,𝑎   𝑀,𝑎   𝑃,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝑆(𝑎)   𝐺(𝑎)   𝐼(𝑎)   𝐿(𝑎)   (𝑎)

Proof of Theorem mirreu
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mirmir.b . . 3 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 27022 . 2 (𝜑 → (𝑀𝐵) ∈ 𝑃)
111, 2, 3, 4, 5, 6, 7, 8, 9mirmir 27023 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
126ad2antrr 723 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝐺 ∈ TarskiG)
137ad2antrr 723 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝐴𝑃)
14 simplr 766 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝑎𝑃)
151, 2, 3, 4, 5, 12, 13, 8, 14mirmir 27023 . . . . 5 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀‘(𝑀𝑎)) = 𝑎)
16 simpr 485 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀𝑎) = 𝐵)
1716fveq2d 6778 . . . . 5 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀‘(𝑀𝑎)) = (𝑀𝐵))
1815, 17eqtr3d 2780 . . . 4 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝑎 = (𝑀𝐵))
1918ex 413 . . 3 ((𝜑𝑎𝑃) → ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵)))
2019ralrimiva 3103 . 2 (𝜑 → ∀𝑎𝑃 ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵)))
21 fveqeq2 6783 . . 3 (𝑎 = (𝑀𝐵) → ((𝑀𝑎) = 𝐵 ↔ (𝑀‘(𝑀𝐵)) = 𝐵))
2221eqreu 3664 . 2 (((𝑀𝐵) ∈ 𝑃 ∧ (𝑀‘(𝑀𝐵)) = 𝐵 ∧ ∀𝑎𝑃 ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵))) → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
2310, 11, 20, 22syl3anc 1370 1 (𝜑 → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  cfv 6433  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  pInvGcmir 27013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-mir 27014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator