Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erbr3b | Structured version Visualization version GIF version |
Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.) |
Ref | Expression |
---|---|
erbr3b | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝑅 Er 𝑋) | |
2 | simplr 769 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐵) | |
3 | simpr 489 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐶) | |
4 | 1, 2, 3 | ertr3d 8318 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶) |
5 | simpll 767 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝑅 Er 𝑋) | |
6 | simplr 769 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | |
7 | simpr 489 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
8 | 5, 6, 7 | ertrd 8316 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
9 | 4, 8 | impbida 801 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 class class class wbr 5033 Er wer 8297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-er 8300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |