Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erbr3b Structured version   Visualization version   GIF version

Theorem erbr3b 30472
Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.)
Assertion
Ref Expression
erbr3b ((𝑅 Er 𝑋𝐴𝑅𝐵) → (𝐴𝑅𝐶𝐵𝑅𝐶))

Proof of Theorem erbr3b
StepHypRef Expression
1 simpll 767 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝑅 Er 𝑋)
2 simplr 769 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐵)
3 simpr 489 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐶)
41, 2, 3ertr3d 8318 . 2 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶)
5 simpll 767 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝑅 Er 𝑋)
6 simplr 769 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵)
7 simpr 489 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶)
85, 6, 7ertrd 8316 . 2 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)
94, 8impbida 801 1 ((𝑅 Er 𝑋𝐴𝑅𝐵) → (𝐴𝑅𝐶𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   class class class wbr 5033   Er wer 8297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-rex 3077  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-br 5034  df-opab 5096  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-er 8300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator