| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erbr3b | Structured version Visualization version GIF version | ||
| Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.) |
| Ref | Expression |
|---|---|
| erbr3b | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝑅 Er 𝑋) | |
| 2 | simplr 768 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐵) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐶) | |
| 4 | 1, 2, 3 | ertr3d 8666 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶) |
| 5 | simpll 766 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝑅 Er 𝑋) | |
| 6 | simplr 768 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | |
| 7 | simpr 484 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
| 8 | 5, 6, 7 | ertrd 8664 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| 9 | 4, 8 | impbida 800 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 class class class wbr 5102 Er wer 8645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-er 8648 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |