![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erbr3b | Structured version Visualization version GIF version |
Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.) |
Ref | Expression |
---|---|
erbr3b | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝑅 Er 𝑋) | |
2 | simplr 768 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐵) | |
3 | simpr 486 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐶) | |
4 | 1, 2, 3 | ertr3d 8721 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶) |
5 | simpll 766 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝑅 Er 𝑋) | |
6 | simplr 768 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | |
7 | simpr 486 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
8 | 5, 6, 7 | ertrd 8719 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
9 | 4, 8 | impbida 800 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 class class class wbr 5149 Er wer 8700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-er 8703 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |