Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erbr3b Structured version   Visualization version   GIF version

Theorem erbr3b 30858
Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.)
Assertion
Ref Expression
erbr3b ((𝑅 Er 𝑋𝐴𝑅𝐵) → (𝐴𝑅𝐶𝐵𝑅𝐶))

Proof of Theorem erbr3b
StepHypRef Expression
1 simpll 763 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝑅 Er 𝑋)
2 simplr 765 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐵)
3 simpr 484 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐶)
41, 2, 3ertr3d 8474 . 2 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶)
5 simpll 763 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝑅 Er 𝑋)
6 simplr 765 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵)
7 simpr 484 . . 3 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶)
85, 6, 7ertrd 8472 . 2 (((𝑅 Er 𝑋𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)
94, 8impbida 797 1 ((𝑅 Er 𝑋𝐴𝑅𝐵) → (𝐴𝑅𝐶𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   class class class wbr 5070   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-er 8456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator