Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunsnima Structured version   Visualization version   GIF version

Theorem iunsnima 32282
Description: Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.)
Hypotheses
Ref Expression
iunsnima.1 (𝜑𝐴𝑉)
iunsnima.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
Assertion
Ref Expression
iunsnima ((𝜑𝑥𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵)

Proof of Theorem iunsnima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3470 . . . 4 𝑥 ∈ V
2 vex 3470 . . . 4 𝑦 ∈ V
31, 2elimasn 6078 . . 3 (𝑦 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
4 opeliunxp 5733 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
54baib 535 . . . 4 (𝑥𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑦𝐵))
65adantl 481 . . 3 ((𝜑𝑥𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑦𝐵))
73, 6bitrid 283 . 2 ((𝜑𝑥𝐴) → (𝑦 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ 𝑦𝐵))
87eqrdv 2722 1 ((𝜑𝑥𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {csn 4620  cop 4626   ciun 4987   × cxp 5664  cima 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-iun 4989  df-br 5139  df-opab 5201  df-xp 5672  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679
This theorem is referenced by:  esum2d  33546
  Copyright terms: Public domain W3C validator