| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunsnima | Structured version Visualization version GIF version | ||
| Description: Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) |
| Ref | Expression |
|---|---|
| iunsnima.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| iunsnima.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| iunsnima | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | vex 3441 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | elimasn 6046 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
| 4 | opeliunxp 5688 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | baib 535 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑦 ∈ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑦 ∈ 𝐵)) |
| 7 | 3, 6 | bitrid 283 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ 𝑦 ∈ 𝐵)) |
| 8 | 7 | eqrdv 2731 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 〈cop 4583 ∪ ciun 4943 × cxp 5619 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-iun 4945 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: esum2d 34178 |
| Copyright terms: Public domain | W3C validator |