Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunsnima Structured version   Visualization version   GIF version

Theorem iunsnima 30958
Description: Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.)
Hypotheses
Ref Expression
iunsnima.1 (𝜑𝐴𝑉)
iunsnima.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
Assertion
Ref Expression
iunsnima ((𝜑𝑥𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵)

Proof of Theorem iunsnima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . 4 𝑥 ∈ V
2 vex 3436 . . . 4 𝑦 ∈ V
31, 2elimasn 5997 . . 3 (𝑦 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
4 opeliunxp 5654 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
54baib 536 . . . 4 (𝑥𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑦𝐵))
65adantl 482 . . 3 ((𝜑𝑥𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑦𝐵))
73, 6syl5bb 283 . 2 ((𝜑𝑥𝐴) → (𝑦 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ 𝑦𝐵))
87eqrdv 2736 1 ((𝜑𝑥𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {csn 4561  cop 4567   ciun 4924   × cxp 5587  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  esum2d  32061
  Copyright terms: Public domain W3C validator