| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunsnima | Structured version Visualization version GIF version | ||
| Description: Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) |
| Ref | Expression |
|---|---|
| iunsnima.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| iunsnima.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| iunsnima | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3467 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | vex 3467 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | elimasn 6088 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
| 4 | opeliunxp 5732 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | baib 535 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑦 ∈ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑦 ∈ 𝐵)) |
| 7 | 3, 6 | bitrid 283 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) ↔ 𝑦 ∈ 𝐵)) |
| 8 | 7 | eqrdv 2732 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑥}) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4606 〈cop 4612 ∪ ciun 4971 × cxp 5663 “ cima 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-iun 4973 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 |
| This theorem is referenced by: esum2d 34053 |
| Copyright terms: Public domain | W3C validator |