MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknsym Structured version   Visualization version   GIF version

Theorem erclwwlknsym 30089
Description: is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlknsym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑦,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊
Allowed substitution hints:   (𝑥,𝑦,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑦,𝑢,𝑡,𝑛)   𝑁(𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem erclwwlknsym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2erclwwlkneqlen 30087 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
41, 2erclwwlkneq 30086 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
5 simpl2 1193 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦𝑊)
6 simpl1 1192 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑥𝑊)
7 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝐺) = (Vtx‘𝐺)
87clwwlknbp 30054 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
9 eqcom 2744 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = 𝑁𝑁 = (♯‘𝑥))
109biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) = 𝑁𝑁 = (♯‘𝑥))
118, 10simpl2im 503 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑥))
1211, 1eleq2s 2859 . . . . . . . . . . . . . . . . 17 (𝑥𝑊𝑁 = (♯‘𝑥))
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥𝑊𝑦𝑊) → 𝑁 = (♯‘𝑥))
1413adantr 480 . . . . . . . . . . . . . . 15 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑁 = (♯‘𝑥))
157clwwlknwrd 30053 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
1615, 1eleq2s 2859 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑊𝑦 ∈ Word (Vtx‘𝐺))
1716adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑊𝑦𝑊) → 𝑦 ∈ Word (Vtx‘𝐺))
1817adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
1918adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑦 ∈ Word (Vtx‘𝐺))
20 simprr 773 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (♯‘𝑥) = (♯‘𝑦))
2119, 20cshwcshid 14866 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
22 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥)))
23 oveq2 7439 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (♯‘𝑦) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
2423adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
2522, 24sylan9eq 2797 . . . . . . . . . . . . . . . . . 18 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑦)))
2625eleq2d 2827 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑛 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...(♯‘𝑦))))
2726anbi1d 631 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) ↔ (𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛))))
2822adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑥)))
2928rexeqdv 3327 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
3021, 27, 293imtr4d 294 . . . . . . . . . . . . . . 15 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3114, 30mpancom 688 . . . . . . . . . . . . . 14 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3231expd 415 . . . . . . . . . . . . 13 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑛 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3332rexlimdv 3153 . . . . . . . . . . . 12 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3433ex 412 . . . . . . . . . . 11 ((𝑥𝑊𝑦𝑊) → ((♯‘𝑥) = (♯‘𝑦) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3534com23 86 . . . . . . . . . 10 ((𝑥𝑊𝑦𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
36353impia 1118 . . . . . . . . 9 ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3736imp 406 . . . . . . . 8 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
38 oveq2 7439 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
3938eqeq2d 2748 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4039cbvrexvw 3238 . . . . . . . 8 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
4137, 40sylibr 234 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))
425, 6, 413jca 1129 . . . . . 6 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))
431, 2erclwwlkneq 30086 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4443ancoms 458 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4542, 44imbitrrid 246 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 𝑥))
4645expd 415 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
474, 46sylbid 240 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
483, 47mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
4948el2v 3487 1 (𝑥 𝑦𝑦 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480   class class class wbr 5143  {copab 5205  cfv 6561  (class class class)co 7431  0cc0 11155  ...cfz 13547  chash 14369  Word cword 14552   cyclShift ccsh 14826  Vtxcvtx 29013   ClWWalksN cclwwlkn 30043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827  df-clwwlk 30001  df-clwwlkn 30044
This theorem is referenced by:  erclwwlkn  30091  eclclwwlkn1  30094
  Copyright terms: Public domain W3C validator