MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknsym Structured version   Visualization version   GIF version

Theorem erclwwlknsym 30051
Description: is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlknsym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑦,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊
Allowed substitution hints:   (𝑥,𝑦,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑦,𝑢,𝑡,𝑛)   𝑁(𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem erclwwlknsym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2erclwwlkneqlen 30049 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
41, 2erclwwlkneq 30048 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
5 simpl2 1193 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦𝑊)
6 simpl1 1192 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑥𝑊)
7 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝐺) = (Vtx‘𝐺)
87clwwlknbp 30016 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
9 eqcom 2742 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = 𝑁𝑁 = (♯‘𝑥))
109biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) = 𝑁𝑁 = (♯‘𝑥))
118, 10simpl2im 503 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑥))
1211, 1eleq2s 2852 . . . . . . . . . . . . . . . . 17 (𝑥𝑊𝑁 = (♯‘𝑥))
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥𝑊𝑦𝑊) → 𝑁 = (♯‘𝑥))
1413adantr 480 . . . . . . . . . . . . . . 15 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑁 = (♯‘𝑥))
157clwwlknwrd 30015 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
1615, 1eleq2s 2852 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑊𝑦 ∈ Word (Vtx‘𝐺))
1716adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑊𝑦𝑊) → 𝑦 ∈ Word (Vtx‘𝐺))
1817adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
1918adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑦 ∈ Word (Vtx‘𝐺))
20 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (♯‘𝑥) = (♯‘𝑦))
2119, 20cshwcshid 14846 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
22 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥)))
23 oveq2 7413 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (♯‘𝑦) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
2423adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
2522, 24sylan9eq 2790 . . . . . . . . . . . . . . . . . 18 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑦)))
2625eleq2d 2820 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑛 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...(♯‘𝑦))))
2726anbi1d 631 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) ↔ (𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛))))
2822adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑥)))
2928rexeqdv 3306 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
3021, 27, 293imtr4d 294 . . . . . . . . . . . . . . 15 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3114, 30mpancom 688 . . . . . . . . . . . . . 14 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3231expd 415 . . . . . . . . . . . . 13 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑛 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3332rexlimdv 3139 . . . . . . . . . . . 12 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3433ex 412 . . . . . . . . . . 11 ((𝑥𝑊𝑦𝑊) → ((♯‘𝑥) = (♯‘𝑦) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3534com23 86 . . . . . . . . . 10 ((𝑥𝑊𝑦𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
36353impia 1117 . . . . . . . . 9 ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3736imp 406 . . . . . . . 8 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
38 oveq2 7413 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
3938eqeq2d 2746 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4039cbvrexvw 3221 . . . . . . . 8 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
4137, 40sylibr 234 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))
425, 6, 413jca 1128 . . . . . 6 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))
431, 2erclwwlkneq 30048 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4443ancoms 458 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4542, 44imbitrrid 246 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 𝑥))
4645expd 415 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
474, 46sylbid 240 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
483, 47mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
4948el2v 3466 1 (𝑥 𝑦𝑦 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459   class class class wbr 5119  {copab 5181  cfv 6531  (class class class)co 7405  0cc0 11129  ...cfz 13524  chash 14348  Word cword 14531   cyclShift ccsh 14806  Vtxcvtx 28975   ClWWalksN cclwwlkn 30005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-hash 14349  df-word 14532  df-concat 14589  df-substr 14659  df-pfx 14689  df-csh 14807  df-clwwlk 29963  df-clwwlkn 30006
This theorem is referenced by:  erclwwlkn  30053  eclclwwlkn1  30056
  Copyright terms: Public domain W3C validator