Step | Hyp | Ref
| Expression |
1 | | erclwwlkn.w |
. . . 4
⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
2 | | erclwwlkn.r |
. . . 4
⊢ ∼ =
{〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
3 | 1, 2 | erclwwlkneqlen 28432 |
. . 3
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) |
4 | 1, 2 | erclwwlkneq 28431 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)))) |
5 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ 𝑊) |
6 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑥 ∈ 𝑊) |
7 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
8 | 7 | clwwlknbp 28399 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁)) |
9 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑥) =
𝑁 ↔ 𝑁 = (♯‘𝑥)) |
10 | 9 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑥) =
𝑁 → 𝑁 = (♯‘𝑥)) |
11 | 8, 10 | simpl2im 504 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑥)) |
12 | 11, 1 | eleq2s 2857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑊 → 𝑁 = (♯‘𝑥)) |
13 | 12 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → 𝑁 = (♯‘𝑥)) |
14 | 13 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑁 = (♯‘𝑥)) |
15 | 7 | clwwlknwrd 28398 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → 𝑦 ∈ Word (Vtx‘𝐺)) |
16 | 15, 1 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝑊 → 𝑦 ∈ Word (Vtx‘𝐺)) |
17 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → 𝑦 ∈ Word (Vtx‘𝐺)) |
18 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺)) |
19 | 18 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑦 ∈ Word (Vtx‘𝐺)) |
20 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (♯‘𝑥) = (♯‘𝑦)) |
21 | 19, 20 | cshwcshid 14540 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))) |
22 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥))) |
23 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑥) =
(♯‘𝑦) →
(0...(♯‘𝑥)) =
(0...(♯‘𝑦))) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (0...(♯‘𝑥)) = (0...(♯‘𝑦))) |
25 | 22, 24 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑦))) |
26 | 25 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑛 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...(♯‘𝑦)))) |
27 | 26 | anbi1d 630 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) ↔ (𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)))) |
28 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑥))) |
29 | 28 | rexeqdv 3349 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))) |
30 | 21, 27, 29 | 3imtr4d 294 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
31 | 14, 30 | mpancom 685 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
32 | 31 | expd 416 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑛 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))) |
33 | 32 | rexlimdv 3212 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
34 | 33 | ex 413 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ((♯‘𝑥) = (♯‘𝑦) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))) |
35 | 34 | com23 86 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))) |
36 | 35 | 3impia 1116 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
37 | 36 | imp 407 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)) |
38 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚)) |
39 | 38 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚))) |
40 | 39 | cbvrexvw 3384 |
. . . . . . . 8
⊢
(∃𝑛 ∈
(0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)) |
41 | 37, 40 | sylibr 233 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) |
42 | 5, 6, 41 | 3jca 1127 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) |
43 | 1, 2 | erclwwlkneq 28431 |
. . . . . . 7
⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
44 | 43 | ancoms 459 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
45 | 42, 44 | syl5ibr 245 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∼ 𝑥)) |
46 | 45 | expd 416 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 ∼ 𝑥))) |
47 | 4, 46 | sylbid 239 |
. . 3
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 ∼ 𝑥))) |
48 | 3, 47 | mpdd 43 |
. 2
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥)) |
49 | 48 | el2v 3440 |
1
⊢ (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥) |