| Step | Hyp | Ref
| Expression |
| 1 | | erclwwlkn.w |
. . . 4
⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| 2 | | erclwwlkn.r |
. . . 4
⊢ ∼ =
{〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| 3 | 1, 2 | erclwwlkneqlen 30087 |
. . 3
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → (♯‘𝑥) = (♯‘𝑦))) |
| 4 | 1, 2 | erclwwlkneq 30086 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)))) |
| 5 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ 𝑊) |
| 6 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑥 ∈ 𝑊) |
| 7 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 8 | 7 | clwwlknbp 30054 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁)) |
| 9 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑥) =
𝑁 ↔ 𝑁 = (♯‘𝑥)) |
| 10 | 9 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑥) =
𝑁 → 𝑁 = (♯‘𝑥)) |
| 11 | 8, 10 | simpl2im 503 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑥)) |
| 12 | 11, 1 | eleq2s 2859 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑊 → 𝑁 = (♯‘𝑥)) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → 𝑁 = (♯‘𝑥)) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑁 = (♯‘𝑥)) |
| 15 | 7 | clwwlknwrd 30053 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → 𝑦 ∈ Word (Vtx‘𝐺)) |
| 16 | 15, 1 | eleq2s 2859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝑊 → 𝑦 ∈ Word (Vtx‘𝐺)) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → 𝑦 ∈ Word (Vtx‘𝐺)) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺)) |
| 19 | 18 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑦 ∈ Word (Vtx‘𝐺)) |
| 20 | | simprr 773 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (♯‘𝑥) = (♯‘𝑦)) |
| 21 | 19, 20 | cshwcshid 14866 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))) |
| 22 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥))) |
| 23 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑥) =
(♯‘𝑦) →
(0...(♯‘𝑥)) =
(0...(♯‘𝑦))) |
| 24 | 23 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (0...(♯‘𝑥)) = (0...(♯‘𝑦))) |
| 25 | 22, 24 | sylan9eq 2797 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑦))) |
| 26 | 25 | eleq2d 2827 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑛 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...(♯‘𝑦)))) |
| 27 | 26 | anbi1d 631 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) ↔ (𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)))) |
| 28 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑥))) |
| 29 | 28 | rexeqdv 3327 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))) |
| 30 | 21, 27, 29 | 3imtr4d 294 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = (♯‘𝑥) ∧ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
| 31 | 14, 30 | mpancom 688 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
| 32 | 31 | expd 415 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑛 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))) |
| 33 | 32 | rexlimdv 3153 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
| 34 | 33 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → ((♯‘𝑥) = (♯‘𝑦) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))) |
| 35 | 34 | com23 86 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))) |
| 36 | 35 | 3impia 1118 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))) |
| 37 | 36 | imp 406 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)) |
| 38 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚)) |
| 39 | 38 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚))) |
| 40 | 39 | cbvrexvw 3238 |
. . . . . . . 8
⊢
(∃𝑛 ∈
(0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)) |
| 41 | 37, 40 | sylibr 234 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) |
| 42 | 5, 6, 41 | 3jca 1129 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) |
| 43 | 1, 2 | erclwwlkneq 30086 |
. . . . . . 7
⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 44 | 43 | ancoms 458 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 45 | 42, 44 | imbitrrid 246 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∼ 𝑥)) |
| 46 | 45 | expd 415 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 ∼ 𝑥))) |
| 47 | 4, 46 | sylbid 240 |
. . 3
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 ∼ 𝑥))) |
| 48 | 3, 47 | mpdd 43 |
. 2
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥)) |
| 49 | 48 | el2v 3487 |
1
⊢ (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥) |