MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknsym Structured version   Visualization version   GIF version

Theorem erclwwlknsym 29756
Description: is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlknsym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑦,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊
Allowed substitution hints:   (𝑥,𝑦,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑦,𝑢,𝑡,𝑛)   𝑁(𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem erclwwlknsym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2erclwwlkneqlen 29754 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
41, 2erclwwlkneq 29753 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
5 simpl2 1191 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦𝑊)
6 simpl1 1190 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑥𝑊)
7 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝐺) = (Vtx‘𝐺)
87clwwlknbp 29721 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
9 eqcom 2738 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = 𝑁𝑁 = (♯‘𝑥))
109biimpi 215 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) = 𝑁𝑁 = (♯‘𝑥))
118, 10simpl2im 503 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑥))
1211, 1eleq2s 2850 . . . . . . . . . . . . . . . . 17 (𝑥𝑊𝑁 = (♯‘𝑥))
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥𝑊𝑦𝑊) → 𝑁 = (♯‘𝑥))
1413adantr 480 . . . . . . . . . . . . . . 15 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑁 = (♯‘𝑥))
157clwwlknwrd 29720 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
1615, 1eleq2s 2850 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑊𝑦 ∈ Word (Vtx‘𝐺))
1716adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑊𝑦𝑊) → 𝑦 ∈ Word (Vtx‘𝐺))
1817adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
1918adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑦 ∈ Word (Vtx‘𝐺))
20 simprr 770 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (♯‘𝑥) = (♯‘𝑦))
2119, 20cshwcshid 14785 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
22 oveq2 7420 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥)))
23 oveq2 7420 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (♯‘𝑦) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
2423adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (0...(♯‘𝑥)) = (0...(♯‘𝑦)))
2522, 24sylan9eq 2791 . . . . . . . . . . . . . . . . . 18 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑦)))
2625eleq2d 2818 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑛 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...(♯‘𝑦))))
2726anbi1d 629 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) ↔ (𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛))))
2822adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...𝑁) = (0...(♯‘𝑥)))
2928rexeqdv 3325 . . . . . . . . . . . . . . . 16 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
3021, 27, 293imtr4d 294 . . . . . . . . . . . . . . 15 ((𝑁 = (♯‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3114, 30mpancom 685 . . . . . . . . . . . . . 14 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3231expd 415 . . . . . . . . . . . . 13 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑛 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3332rexlimdv 3152 . . . . . . . . . . . 12 (((𝑥𝑊𝑦𝑊) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3433ex 412 . . . . . . . . . . 11 ((𝑥𝑊𝑦𝑊) → ((♯‘𝑥) = (♯‘𝑦) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3534com23 86 . . . . . . . . . 10 ((𝑥𝑊𝑦𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
36353impia 1116 . . . . . . . . 9 ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3736imp 406 . . . . . . . 8 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
38 oveq2 7420 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
3938eqeq2d 2742 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4039cbvrexvw 3234 . . . . . . . 8 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
4137, 40sylibr 233 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))
425, 6, 413jca 1127 . . . . . 6 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))
431, 2erclwwlkneq 29753 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4443ancoms 458 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4542, 44imbitrrid 245 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 𝑥))
4645expd 415 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
474, 46sylbid 239 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
483, 47mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
4948el2v 3481 1 (𝑥 𝑦𝑦 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wrex 3069  Vcvv 3473   class class class wbr 5148  {copab 5210  cfv 6543  (class class class)co 7412  0cc0 11116  ...cfz 13491  chash 14297  Word cword 14471   cyclShift ccsh 14745  Vtxcvtx 28689   ClWWalksN cclwwlkn 29710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-hash 14298  df-word 14472  df-concat 14528  df-substr 14598  df-pfx 14628  df-csh 14746  df-clwwlk 29668  df-clwwlkn 29711
This theorem is referenced by:  erclwwlkn  29758  eclclwwlkn1  29761
  Copyright terms: Public domain W3C validator