| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlknref | Structured version Visualization version GIF version | ||
| Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlknref | ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . . 3 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) | |
| 2 | anidm 564 | . . . 4 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ↔ 𝑥 ∈ 𝑊) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ (((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 5 | erclwwlkn.w | . . . 4 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 6 | erclwwlkn.r | . . . 4 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 7 | 5, 6 | erclwwlkneq 30049 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))) |
| 8 | 7 | el2v 3444 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 9 | eqid 2733 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 10 | 9 | clwwlknwrd 30016 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑥 ∈ Word (Vtx‘𝐺)) |
| 11 | clwwlknnn 30015 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ) | |
| 12 | cshw0 14703 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
| 13 | nnnn0 12395 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 14 | 0elfz 13526 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 ∈ (0...𝑁)) |
| 16 | eqcom 2740 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
| 17 | 16 | biimpi 216 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
| 18 | oveq2 7360 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
| 19 | 18 | rspceeqv 3596 | . . . . . . . 8 ⊢ ((0 ∈ (0...𝑁) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 20 | 15, 17, 19 | syl2anr 597 | . . . . . . 7 ⊢ (((𝑥 cyclShift 0) = 𝑥 ∧ 𝑁 ∈ ℕ) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 21 | 20 | ex 412 | . . . . . 6 ⊢ ((𝑥 cyclShift 0) = 𝑥 → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 22 | 12, 21 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 23 | 10, 11, 22 | sylc 65 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 24 | 23, 5 | eleq2s 2851 | . . 3 ⊢ (𝑥 ∈ 𝑊 → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 25 | 24 | pm4.71i 559 | . 2 ⊢ (𝑥 ∈ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 26 | 4, 8, 25 | 3bitr4ri 304 | 1 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 class class class wbr 5093 {copab 5155 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℕcn 12132 ℕ0cn0 12388 ...cfz 13409 Word cword 14422 cyclShift ccsh 14697 Vtxcvtx 28976 ClWWalksN cclwwlkn 30006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-hash 14240 df-word 14423 df-concat 14480 df-substr 14551 df-pfx 14581 df-csh 14698 df-clwwlk 29964 df-clwwlkn 30007 |
| This theorem is referenced by: erclwwlkn 30054 |
| Copyright terms: Public domain | W3C validator |