![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlknref | Structured version Visualization version GIF version |
Description: ⌠is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⢠ð = (ð ClWWalksN ðº) |
erclwwlkn.r | ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð â§ ð¢ â ð â§ âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} |
Ref | Expression |
---|---|
erclwwlknref | ⢠(ð¥ â ð â ð¥ ⌠ð¥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1086 | . . 3 ⢠((ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â ((ð¥ â ð â§ ð¥ â ð) â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) | |
2 | anidm 563 | . . . 4 ⢠((ð¥ â ð â§ ð¥ â ð) â ð¥ â ð) | |
3 | 2 | anbi1i 622 | . . 3 ⢠(((ð¥ â ð â§ ð¥ â ð) â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â (ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
4 | 1, 3 | bitri 274 | . 2 ⢠((ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â (ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
5 | erclwwlkn.w | . . . 4 ⢠ð = (ð ClWWalksN ðº) | |
6 | erclwwlkn.r | . . . 4 ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð â§ ð¢ â ð â§ âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} | |
7 | 5, 6 | erclwwlkneq 29919 | . . 3 ⢠((ð¥ â V â§ ð¥ â V) â (ð¥ ⌠ð¥ â (ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)))) |
8 | 7 | el2v 3471 | . 2 ⢠(ð¥ ⌠ð¥ â (ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
9 | eqid 2725 | . . . . . 6 ⢠(Vtxâðº) = (Vtxâðº) | |
10 | 9 | clwwlknwrd 29886 | . . . . 5 ⢠(ð¥ â (ð ClWWalksN ðº) â ð¥ â Word (Vtxâðº)) |
11 | clwwlknnn 29885 | . . . . 5 ⢠(ð¥ â (ð ClWWalksN ðº) â ð â â) | |
12 | cshw0 14774 | . . . . . 6 ⢠(ð¥ â Word (Vtxâðº) â (ð¥ cyclShift 0) = ð¥) | |
13 | nnnn0 12507 | . . . . . . . . 9 ⢠(ð â â â ð â â0) | |
14 | 0elfz 13628 | . . . . . . . . 9 ⢠(ð â â0 â 0 â (0...ð)) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⢠(ð â â â 0 â (0...ð)) |
16 | eqcom 2732 | . . . . . . . . 9 ⢠((ð¥ cyclShift 0) = ð¥ â ð¥ = (ð¥ cyclShift 0)) | |
17 | 16 | biimpi 215 | . . . . . . . 8 ⢠((ð¥ cyclShift 0) = ð¥ â ð¥ = (ð¥ cyclShift 0)) |
18 | oveq2 7423 | . . . . . . . . 9 ⢠(ð = 0 â (ð¥ cyclShift ð) = (ð¥ cyclShift 0)) | |
19 | 18 | rspceeqv 3624 | . . . . . . . 8 ⢠((0 â (0...ð) â§ ð¥ = (ð¥ cyclShift 0)) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
20 | 15, 17, 19 | syl2anr 595 | . . . . . . 7 ⢠(((ð¥ cyclShift 0) = ð¥ â§ ð â â) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
21 | 20 | ex 411 | . . . . . 6 ⢠((ð¥ cyclShift 0) = ð¥ â (ð â â â âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
22 | 12, 21 | syl 17 | . . . . 5 ⢠(ð¥ â Word (Vtxâðº) â (ð â â â âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
23 | 10, 11, 22 | sylc 65 | . . . 4 ⢠(ð¥ â (ð ClWWalksN ðº) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
24 | 23, 5 | eleq2s 2843 | . . 3 ⢠(ð¥ â ð â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
25 | 24 | pm4.71i 558 | . 2 ⢠(ð¥ â ð â (ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
26 | 4, 8, 25 | 3bitr4ri 303 | 1 ⢠(ð¥ â ð â ð¥ ⌠ð¥) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 â§ wa 394 â§ w3a 1084 = wceq 1533 â wcel 2098 âwrex 3060 Vcvv 3463 class class class wbr 5143 {copab 5205 âcfv 6542 (class class class)co 7415 0cc0 11136 âcn 12240 â0cn0 12500 ...cfz 13514 Word cword 14494 cyclShift ccsh 14768 Vtxcvtx 28851 ClWWalksN cclwwlkn 29876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-rp 13005 df-fz 13515 df-fzo 13658 df-fl 13787 df-mod 13865 df-hash 14320 df-word 14495 df-concat 14551 df-substr 14621 df-pfx 14651 df-csh 14769 df-clwwlk 29834 df-clwwlkn 29877 |
This theorem is referenced by: erclwwlkn 29924 |
Copyright terms: Public domain | W3C validator |