| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlknref | Structured version Visualization version GIF version | ||
| Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlknref | ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . . 3 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) | |
| 2 | anidm 564 | . . . 4 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ↔ 𝑥 ∈ 𝑊) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ (((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 5 | erclwwlkn.w | . . . 4 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 6 | erclwwlkn.r | . . . 4 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 7 | 5, 6 | erclwwlkneq 30048 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))) |
| 8 | 7 | el2v 3466 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 9 | eqid 2735 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 10 | 9 | clwwlknwrd 30015 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑥 ∈ Word (Vtx‘𝐺)) |
| 11 | clwwlknnn 30014 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ) | |
| 12 | cshw0 14812 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
| 13 | nnnn0 12508 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 14 | 0elfz 13641 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 ∈ (0...𝑁)) |
| 16 | eqcom 2742 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
| 17 | 16 | biimpi 216 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
| 18 | oveq2 7413 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
| 19 | 18 | rspceeqv 3624 | . . . . . . . 8 ⊢ ((0 ∈ (0...𝑁) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 20 | 15, 17, 19 | syl2anr 597 | . . . . . . 7 ⊢ (((𝑥 cyclShift 0) = 𝑥 ∧ 𝑁 ∈ ℕ) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 21 | 20 | ex 412 | . . . . . 6 ⊢ ((𝑥 cyclShift 0) = 𝑥 → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 22 | 12, 21 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 23 | 10, 11, 22 | sylc 65 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 24 | 23, 5 | eleq2s 2852 | . . 3 ⊢ (𝑥 ∈ 𝑊 → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 25 | 24 | pm4.71i 559 | . 2 ⊢ (𝑥 ∈ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 26 | 4, 8, 25 | 3bitr4ri 304 | 1 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 {copab 5181 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℕcn 12240 ℕ0cn0 12501 ...cfz 13524 Word cword 14531 cyclShift ccsh 14806 Vtxcvtx 28975 ClWWalksN cclwwlkn 30005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-hash 14349 df-word 14532 df-concat 14589 df-substr 14659 df-pfx 14689 df-csh 14807 df-clwwlk 29963 df-clwwlkn 30006 |
| This theorem is referenced by: erclwwlkn 30053 |
| Copyright terms: Public domain | W3C validator |