MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknref Structured version   Visualization version   GIF version

Theorem erclwwlknref 29921
Description: ∌ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlknref (𝑥 ∈ 𝑊 ↔ 𝑥 ∌ 𝑥)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥
Allowed substitution hints:   ∌ (𝑥,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑢,𝑡,𝑛)   𝑊(𝑥,𝑛)

Proof of Theorem erclwwlknref
StepHypRef Expression
1 df-3an 1086 . . 3 ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
2 anidm 563 . . . 4 ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ↔ 𝑥 ∈ 𝑊)
32anbi1i 622 . . 3 (((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
41, 3bitri 274 . 2 ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
5 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
6 erclwwlkn.r . . . 4 ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
75, 6erclwwlkneq 29919 . . 3 ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∌ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))))
87el2v 3471 . 2 (𝑥 ∌ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
9 eqid 2725 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
109clwwlknwrd 29886 . . . . 5 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑥 ∈ Word (Vtx‘𝐺))
11 clwwlknnn 29885 . . . . 5 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
12 cshw0 14774 . . . . . 6 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥)
13 nnnn0 12507 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 0elfz 13628 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
1513, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ (0...𝑁))
16 eqcom 2732 . . . . . . . . 9 ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0))
1716biimpi 215 . . . . . . . 8 ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0))
18 oveq2 7423 . . . . . . . . 9 (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0))
1918rspceeqv 3624 . . . . . . . 8 ((0 ∈ (0...𝑁) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2015, 17, 19syl2anr 595 . . . . . . 7 (((𝑥 cyclShift 0) = 𝑥 ∧ 𝑁 ∈ ℕ) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2120ex 411 . . . . . 6 ((𝑥 cyclShift 0) = 𝑥 → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
2212, 21syl 17 . . . . 5 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
2310, 11, 22sylc 65 . . . 4 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2423, 5eleq2s 2843 . . 3 (𝑥 ∈ 𝑊 → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2524pm4.71i 558 . 2 (𝑥 ∈ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
264, 8, 253bitr4ri 303 1 (𝑥 ∈ 𝑊 ↔ 𝑥 ∌ 𝑥)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  âˆƒwrex 3060  Vcvv 3463   class class class wbr 5143  {copab 5205  â€˜cfv 6542  (class class class)co 7415  0cc0 11136  â„•cn 12240  â„•0cn0 12500  ...cfz 13514  Word cword 14494   cyclShift ccsh 14768  Vtxcvtx 28851   ClWWalksN cclwwlkn 29876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-oadd 8487  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658  df-fl 13787  df-mod 13865  df-hash 14320  df-word 14495  df-concat 14551  df-substr 14621  df-pfx 14651  df-csh 14769  df-clwwlk 29834  df-clwwlkn 29877
This theorem is referenced by:  erclwwlkn  29924
  Copyright terms: Public domain W3C validator