| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlknref | Structured version Visualization version GIF version | ||
| Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlknref | ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . . 3 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) | |
| 2 | anidm 564 | . . . 4 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ↔ 𝑥 ∈ 𝑊) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ (((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 5 | erclwwlkn.w | . . . 4 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 6 | erclwwlkn.r | . . . 4 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 7 | 5, 6 | erclwwlkneq 30003 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))) |
| 8 | 7 | el2v 3457 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 9 | eqid 2730 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 10 | 9 | clwwlknwrd 29970 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑥 ∈ Word (Vtx‘𝐺)) |
| 11 | clwwlknnn 29969 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ) | |
| 12 | cshw0 14766 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
| 13 | nnnn0 12456 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 14 | 0elfz 13592 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 ∈ (0...𝑁)) |
| 16 | eqcom 2737 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
| 17 | 16 | biimpi 216 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
| 18 | oveq2 7398 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
| 19 | 18 | rspceeqv 3614 | . . . . . . . 8 ⊢ ((0 ∈ (0...𝑁) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 20 | 15, 17, 19 | syl2anr 597 | . . . . . . 7 ⊢ (((𝑥 cyclShift 0) = 𝑥 ∧ 𝑁 ∈ ℕ) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 21 | 20 | ex 412 | . . . . . 6 ⊢ ((𝑥 cyclShift 0) = 𝑥 → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 22 | 12, 21 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 23 | 10, 11, 22 | sylc 65 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 24 | 23, 5 | eleq2s 2847 | . . 3 ⊢ (𝑥 ∈ 𝑊 → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
| 25 | 24 | pm4.71i 559 | . 2 ⊢ (𝑥 ∈ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
| 26 | 4, 8, 25 | 3bitr4ri 304 | 1 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 class class class wbr 5110 {copab 5172 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ...cfz 13475 Word cword 14485 cyclShift ccsh 14760 Vtxcvtx 28930 ClWWalksN cclwwlkn 29960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-hash 14303 df-word 14486 df-concat 14543 df-substr 14613 df-pfx 14643 df-csh 14761 df-clwwlk 29918 df-clwwlkn 29961 |
| This theorem is referenced by: erclwwlkn 30008 |
| Copyright terms: Public domain | W3C validator |