Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknref Structured version   Visualization version   GIF version

Theorem erclwwlknref 27953
 Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlknref (𝑥𝑊𝑥 𝑥)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥
Allowed substitution hints:   (𝑥,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑢,𝑡,𝑛)   𝑊(𝑥,𝑛)

Proof of Theorem erclwwlknref
StepHypRef Expression
1 df-3an 1086 . . 3 ((𝑥𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥𝑊𝑥𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
2 anidm 568 . . . 4 ((𝑥𝑊𝑥𝑊) ↔ 𝑥𝑊)
32anbi1i 626 . . 3 (((𝑥𝑊𝑥𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
41, 3bitri 278 . 2 ((𝑥𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
5 erclwwlkn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
6 erclwwlkn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
75, 6erclwwlkneq 27951 . . 3 ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 𝑥 ↔ (𝑥𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))))
87el2v 3417 . 2 (𝑥 𝑥 ↔ (𝑥𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
9 eqid 2758 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
109clwwlknwrd 27918 . . . . 5 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑥 ∈ Word (Vtx‘𝐺))
11 clwwlknnn 27917 . . . . 5 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
12 cshw0 14203 . . . . . 6 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥)
13 nnnn0 11941 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 0elfz 13053 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
1513, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ (0...𝑁))
16 eqcom 2765 . . . . . . . . 9 ((𝑥 cyclShift 0) = 𝑥𝑥 = (𝑥 cyclShift 0))
1716biimpi 219 . . . . . . . 8 ((𝑥 cyclShift 0) = 𝑥𝑥 = (𝑥 cyclShift 0))
18 oveq2 7158 . . . . . . . . 9 (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0))
1918rspceeqv 3556 . . . . . . . 8 ((0 ∈ (0...𝑁) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2015, 17, 19syl2anr 599 . . . . . . 7 (((𝑥 cyclShift 0) = 𝑥𝑁 ∈ ℕ) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2120ex 416 . . . . . 6 ((𝑥 cyclShift 0) = 𝑥 → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
2212, 21syl 17 . . . . 5 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
2310, 11, 22sylc 65 . . . 4 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2423, 5eleq2s 2870 . . 3 (𝑥𝑊 → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))
2524pm4.71i 563 . 2 (𝑥𝑊 ↔ (𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))
264, 8, 253bitr4ri 307 1 (𝑥𝑊𝑥 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃wrex 3071  Vcvv 3409   class class class wbr 5032  {copab 5094  ‘cfv 6335  (class class class)co 7150  0cc0 10575  ℕcn 11674  ℕ0cn0 11934  ...cfz 12939  Word cword 13913   cyclShift ccsh 14197  Vtxcvtx 26888   ClWWalksN cclwwlkn 27908 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-oadd 8116  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-n0 11935  df-xnn0 12007  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-hash 13741  df-word 13914  df-concat 13970  df-substr 14050  df-pfx 14080  df-csh 14198  df-clwwlk 27866  df-clwwlkn 27909 This theorem is referenced by:  erclwwlkn  27956
 Copyright terms: Public domain W3C validator