![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlknref | Structured version Visualization version GIF version |
Description: ⌠is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⢠ð = (ð ClWWalksN ðº) |
erclwwlkn.r | ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð â§ ð¢ â ð â§ âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} |
Ref | Expression |
---|---|
erclwwlknref | ⢠(ð¥ â ð â ð¥ ⌠ð¥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . . 3 ⢠((ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â ((ð¥ â ð â§ ð¥ â ð) â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) | |
2 | anidm 564 | . . . 4 ⢠((ð¥ â ð â§ ð¥ â ð) â ð¥ â ð) | |
3 | 2 | anbi1i 623 | . . 3 ⢠(((ð¥ â ð â§ ð¥ â ð) â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â (ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
4 | 1, 3 | bitri 275 | . 2 ⢠((ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â (ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
5 | erclwwlkn.w | . . . 4 ⢠ð = (ð ClWWalksN ðº) | |
6 | erclwwlkn.r | . . . 4 ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð â§ ð¢ â ð â§ âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} | |
7 | 5, 6 | erclwwlkneq 29851 | . . 3 ⢠((ð¥ â V â§ ð¥ â V) â (ð¥ ⌠ð¥ â (ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð)))) |
8 | 7 | el2v 3477 | . 2 ⢠(ð¥ ⌠ð¥ â (ð¥ â ð â§ ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
9 | eqid 2727 | . . . . . 6 ⢠(Vtxâðº) = (Vtxâðº) | |
10 | 9 | clwwlknwrd 29818 | . . . . 5 ⢠(ð¥ â (ð ClWWalksN ðº) â ð¥ â Word (Vtxâðº)) |
11 | clwwlknnn 29817 | . . . . 5 ⢠(ð¥ â (ð ClWWalksN ðº) â ð â â) | |
12 | cshw0 14762 | . . . . . 6 ⢠(ð¥ â Word (Vtxâðº) â (ð¥ cyclShift 0) = ð¥) | |
13 | nnnn0 12495 | . . . . . . . . 9 ⢠(ð â â â ð â â0) | |
14 | 0elfz 13616 | . . . . . . . . 9 ⢠(ð â â0 â 0 â (0...ð)) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⢠(ð â â â 0 â (0...ð)) |
16 | eqcom 2734 | . . . . . . . . 9 ⢠((ð¥ cyclShift 0) = ð¥ â ð¥ = (ð¥ cyclShift 0)) | |
17 | 16 | biimpi 215 | . . . . . . . 8 ⢠((ð¥ cyclShift 0) = ð¥ â ð¥ = (ð¥ cyclShift 0)) |
18 | oveq2 7422 | . . . . . . . . 9 ⢠(ð = 0 â (ð¥ cyclShift ð) = (ð¥ cyclShift 0)) | |
19 | 18 | rspceeqv 3629 | . . . . . . . 8 ⢠((0 â (0...ð) â§ ð¥ = (ð¥ cyclShift 0)) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
20 | 15, 17, 19 | syl2anr 596 | . . . . . . 7 ⢠(((ð¥ cyclShift 0) = ð¥ â§ ð â â) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
21 | 20 | ex 412 | . . . . . 6 ⢠((ð¥ cyclShift 0) = ð¥ â (ð â â â âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
22 | 12, 21 | syl 17 | . . . . 5 ⢠(ð¥ â Word (Vtxâðº) â (ð â â â âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
23 | 10, 11, 22 | sylc 65 | . . . 4 ⢠(ð¥ â (ð ClWWalksN ðº) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
24 | 23, 5 | eleq2s 2846 | . . 3 ⢠(ð¥ â ð â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
25 | 24 | pm4.71i 559 | . 2 ⢠(ð¥ â ð â (ð¥ â ð â§ âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
26 | 4, 8, 25 | 3bitr4ri 304 | 1 ⢠(ð¥ â ð â ð¥ ⌠ð¥) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 â§ wa 395 â§ w3a 1085 = wceq 1534 â wcel 2099 âwrex 3065 Vcvv 3469 class class class wbr 5142 {copab 5204 âcfv 6542 (class class class)co 7414 0cc0 11124 âcn 12228 â0cn0 12488 ...cfz 13502 Word cword 14482 cyclShift ccsh 14756 Vtxcvtx 28783 ClWWalksN cclwwlkn 29808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-inf 9452 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-xnn0 12561 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 df-hash 14308 df-word 14483 df-concat 14539 df-substr 14609 df-pfx 14639 df-csh 14757 df-clwwlk 29766 df-clwwlkn 29809 |
This theorem is referenced by: erclwwlkn 29856 |
Copyright terms: Public domain | W3C validator |