Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erclwwlknref | Structured version Visualization version GIF version |
Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlknref | ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1086 | . . 3 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) | |
2 | anidm 568 | . . . 4 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ↔ 𝑥 ∈ 𝑊) | |
3 | 2 | anbi1i 626 | . . 3 ⊢ (((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
4 | 1, 3 | bitri 278 | . 2 ⊢ ((𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
5 | erclwwlkn.w | . . . 4 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
6 | erclwwlkn.r | . . . 4 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
7 | 5, 6 | erclwwlkneq 27951 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)))) |
8 | 7 | el2v 3417 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
9 | eqid 2758 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
10 | 9 | clwwlknwrd 27918 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑥 ∈ Word (Vtx‘𝐺)) |
11 | clwwlknnn 27917 | . . . . 5 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ) | |
12 | cshw0 14203 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
13 | nnnn0 11941 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
14 | 0elfz 13053 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 ∈ (0...𝑁)) |
16 | eqcom 2765 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
17 | 16 | biimpi 219 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
18 | oveq2 7158 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
19 | 18 | rspceeqv 3556 | . . . . . . . 8 ⊢ ((0 ∈ (0...𝑁) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
20 | 15, 17, 19 | syl2anr 599 | . . . . . . 7 ⊢ (((𝑥 cyclShift 0) = 𝑥 ∧ 𝑁 ∈ ℕ) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
21 | 20 | ex 416 | . . . . . 6 ⊢ ((𝑥 cyclShift 0) = 𝑥 → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
22 | 12, 21 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ ℕ → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
23 | 10, 11, 22 | sylc 65 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
24 | 23, 5 | eleq2s 2870 | . . 3 ⊢ (𝑥 ∈ 𝑊 → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛)) |
25 | 24 | pm4.71i 563 | . 2 ⊢ (𝑥 ∈ 𝑊 ↔ (𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑥 cyclShift 𝑛))) |
26 | 4, 8, 25 | 3bitr4ri 307 | 1 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∼ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 Vcvv 3409 class class class wbr 5032 {copab 5094 ‘cfv 6335 (class class class)co 7150 0cc0 10575 ℕcn 11674 ℕ0cn0 11934 ...cfz 12939 Word cword 13913 cyclShift ccsh 14197 Vtxcvtx 26888 ClWWalksN cclwwlkn 27908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-oadd 8116 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-n0 11935 df-xnn0 12007 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-fl 13211 df-mod 13287 df-hash 13741 df-word 13914 df-concat 13970 df-substr 14050 df-pfx 14080 df-csh 14198 df-clwwlk 27866 df-clwwlkn 27909 |
This theorem is referenced by: erclwwlkn 27956 |
Copyright terms: Public domain | W3C validator |