![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlknref | Structured version Visualization version GIF version |
Description: ⌠is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 26-Mar-2018.) (Revised by AV, 30-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⢠ð = (ð ClWWalksN ðº) |
erclwwlkn.r | ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð ⧠ð¢ â ð ⧠âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} |
Ref | Expression |
---|---|
erclwwlknref | ⢠(ð¥ â ð â ð¥ ⌠ð¥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . . 3 ⢠((ð¥ â ð ⧠ð¥ â ð ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â ((ð¥ â ð ⧠ð¥ â ð) ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) | |
2 | anidm 565 | . . . 4 ⢠((ð¥ â ð ⧠ð¥ â ð) â ð¥ â ð) | |
3 | 2 | anbi1i 624 | . . 3 ⢠(((ð¥ â ð ⧠ð¥ â ð) ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â (ð¥ â ð ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
4 | 1, 3 | bitri 274 | . 2 ⢠((ð¥ â ð ⧠ð¥ â ð ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) â (ð¥ â ð ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
5 | erclwwlkn.w | . . . 4 ⢠ð = (ð ClWWalksN ðº) | |
6 | erclwwlkn.r | . . . 4 ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð ⧠ð¢ â ð ⧠âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} | |
7 | 5, 6 | erclwwlkneq 29317 | . . 3 ⢠((ð¥ â V ⧠ð¥ â V) â (ð¥ ⌠ð¥ â (ð¥ â ð ⧠ð¥ â ð ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð)))) |
8 | 7 | el2v 3482 | . 2 ⢠(ð¥ ⌠ð¥ â (ð¥ â ð ⧠ð¥ â ð ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
9 | eqid 2732 | . . . . . 6 ⢠(Vtxâðº) = (Vtxâðº) | |
10 | 9 | clwwlknwrd 29284 | . . . . 5 ⢠(ð¥ â (ð ClWWalksN ðº) â ð¥ â Word (Vtxâðº)) |
11 | clwwlknnn 29283 | . . . . 5 ⢠(ð¥ â (ð ClWWalksN ðº) â ð â â) | |
12 | cshw0 14743 | . . . . . 6 ⢠(ð¥ â Word (Vtxâðº) â (ð¥ cyclShift 0) = ð¥) | |
13 | nnnn0 12478 | . . . . . . . . 9 ⢠(ð â â â ð â â0) | |
14 | 0elfz 13597 | . . . . . . . . 9 ⢠(ð â â0 â 0 â (0...ð)) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⢠(ð â â â 0 â (0...ð)) |
16 | eqcom 2739 | . . . . . . . . 9 ⢠((ð¥ cyclShift 0) = ð¥ â ð¥ = (ð¥ cyclShift 0)) | |
17 | 16 | biimpi 215 | . . . . . . . 8 ⢠((ð¥ cyclShift 0) = ð¥ â ð¥ = (ð¥ cyclShift 0)) |
18 | oveq2 7416 | . . . . . . . . 9 ⢠(ð = 0 â (ð¥ cyclShift ð) = (ð¥ cyclShift 0)) | |
19 | 18 | rspceeqv 3633 | . . . . . . . 8 ⢠((0 â (0...ð) ⧠ð¥ = (ð¥ cyclShift 0)) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
20 | 15, 17, 19 | syl2anr 597 | . . . . . . 7 ⢠(((ð¥ cyclShift 0) = ð¥ ⧠ð â â) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
21 | 20 | ex 413 | . . . . . 6 ⢠((ð¥ cyclShift 0) = ð¥ â (ð â â â âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
22 | 12, 21 | syl 17 | . . . . 5 ⢠(ð¥ â Word (Vtxâðº) â (ð â â â âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
23 | 10, 11, 22 | sylc 65 | . . . 4 ⢠(ð¥ â (ð ClWWalksN ðº) â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
24 | 23, 5 | eleq2s 2851 | . . 3 ⢠(ð¥ â ð â âð â (0...ð)ð¥ = (ð¥ cyclShift ð)) |
25 | 24 | pm4.71i 560 | . 2 ⢠(ð¥ â ð â (ð¥ â ð ⧠âð â (0...ð)ð¥ = (ð¥ cyclShift ð))) |
26 | 4, 8, 25 | 3bitr4ri 303 | 1 ⢠(ð¥ â ð â ð¥ ⌠ð¥) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 ⧠wa 396 ⧠w3a 1087 = wceq 1541 â wcel 2106 âwrex 3070 Vcvv 3474 class class class wbr 5148 {copab 5210 âcfv 6543 (class class class)co 7408 0cc0 11109 âcn 12211 â0cn0 12471 ...cfz 13483 Word cword 14463 cyclShift ccsh 14737 Vtxcvtx 28253 ClWWalksN cclwwlkn 29274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-hash 14290 df-word 14464 df-concat 14520 df-substr 14590 df-pfx 14620 df-csh 14738 df-clwwlk 29232 df-clwwlkn 29275 |
This theorem is referenced by: erclwwlkn 29322 |
Copyright terms: Public domain | W3C validator |