| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlkneqlen | Structured version Visualization version GIF version | ||
| Description: If two classes are equivalent regarding ∼, then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlkneqlen | ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 → (♯‘𝑇) = (♯‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erclwwlkn.w | . . 3 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 2 | erclwwlkn.r | . . 3 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 3 | 1, 2 | erclwwlkneq 30058 | . 2 ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 ↔ (𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))) |
| 4 | fveq2 6831 | . . . . 5 ⊢ (𝑇 = (𝑈 cyclShift 𝑛) → (♯‘𝑇) = (♯‘(𝑈 cyclShift 𝑛))) | |
| 5 | eqid 2733 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 6 | 5 | clwwlknwrd 30025 | . . . . . . . 8 ⊢ (𝑈 ∈ (𝑁 ClWWalksN 𝐺) → 𝑈 ∈ Word (Vtx‘𝐺)) |
| 7 | 6, 1 | eleq2s 2851 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑊 → 𝑈 ∈ Word (Vtx‘𝐺)) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) → 𝑈 ∈ Word (Vtx‘𝐺)) |
| 9 | elfzelz 13434 | . . . . . 6 ⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ) | |
| 10 | cshwlen 14716 | . . . . . 6 ⊢ ((𝑈 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ ℤ) → (♯‘(𝑈 cyclShift 𝑛)) = (♯‘𝑈)) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . 5 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) ∧ 𝑛 ∈ (0...𝑁)) → (♯‘(𝑈 cyclShift 𝑛)) = (♯‘𝑈)) |
| 12 | 4, 11 | sylan9eqr 2790 | . . . 4 ⊢ ((((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑇 = (𝑈 cyclShift 𝑛)) → (♯‘𝑇) = (♯‘𝑈)) |
| 13 | 12 | rexlimdva2 3137 | . . 3 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛) → (♯‘𝑇) = (♯‘𝑈))) |
| 14 | 13 | 3impia 1117 | . 2 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)) → (♯‘𝑇) = (♯‘𝑈)) |
| 15 | 3, 14 | biimtrdi 253 | 1 ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 → (♯‘𝑇) = (♯‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 class class class wbr 5095 {copab 5157 ‘cfv 6489 (class class class)co 7355 0cc0 11016 ℤcz 12478 ...cfz 13417 ♯chash 14247 Word cword 14430 cyclShift ccsh 14705 Vtxcvtx 28985 ClWWalksN cclwwlkn 30015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-hash 14248 df-word 14431 df-concat 14488 df-substr 14559 df-pfx 14589 df-csh 14706 df-clwwlk 29973 df-clwwlkn 30016 |
| This theorem is referenced by: erclwwlknsym 30061 erclwwlkntr 30062 |
| Copyright terms: Public domain | W3C validator |