| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlkneqlen | Structured version Visualization version GIF version | ||
| Description: If two classes are equivalent regarding ∼, then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlkneqlen | ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 → (♯‘𝑇) = (♯‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erclwwlkn.w | . . 3 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 2 | erclwwlkn.r | . . 3 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 3 | 1, 2 | erclwwlkneq 30086 | . 2 ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 ↔ (𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))) |
| 4 | fveq2 6906 | . . . . 5 ⊢ (𝑇 = (𝑈 cyclShift 𝑛) → (♯‘𝑇) = (♯‘(𝑈 cyclShift 𝑛))) | |
| 5 | eqid 2737 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 6 | 5 | clwwlknwrd 30053 | . . . . . . . 8 ⊢ (𝑈 ∈ (𝑁 ClWWalksN 𝐺) → 𝑈 ∈ Word (Vtx‘𝐺)) |
| 7 | 6, 1 | eleq2s 2859 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑊 → 𝑈 ∈ Word (Vtx‘𝐺)) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) → 𝑈 ∈ Word (Vtx‘𝐺)) |
| 9 | elfzelz 13564 | . . . . . 6 ⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ) | |
| 10 | cshwlen 14837 | . . . . . 6 ⊢ ((𝑈 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ ℤ) → (♯‘(𝑈 cyclShift 𝑛)) = (♯‘𝑈)) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . 5 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) ∧ 𝑛 ∈ (0...𝑁)) → (♯‘(𝑈 cyclShift 𝑛)) = (♯‘𝑈)) |
| 12 | 4, 11 | sylan9eqr 2799 | . . . 4 ⊢ ((((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑇 = (𝑈 cyclShift 𝑛)) → (♯‘𝑇) = (♯‘𝑈)) |
| 13 | 12 | rexlimdva2 3157 | . . 3 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊) → (∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛) → (♯‘𝑇) = (♯‘𝑈))) |
| 14 | 13 | 3impia 1118 | . 2 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑈 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)) → (♯‘𝑇) = (♯‘𝑈)) |
| 15 | 3, 14 | biimtrdi 253 | 1 ⊢ ((𝑇 ∈ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑇 ∼ 𝑈 → (♯‘𝑇) = (♯‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 {copab 5205 ‘cfv 6561 (class class class)co 7431 0cc0 11155 ℤcz 12613 ...cfz 13547 ♯chash 14369 Word cword 14552 cyclShift ccsh 14826 Vtxcvtx 29013 ClWWalksN cclwwlkn 30043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-hash 14370 df-word 14553 df-concat 14609 df-substr 14679 df-pfx 14709 df-csh 14827 df-clwwlk 30001 df-clwwlkn 30044 |
| This theorem is referenced by: erclwwlknsym 30089 erclwwlkntr 30090 |
| Copyright terms: Public domain | W3C validator |