![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkneqlen | Structured version Visualization version GIF version |
Description: If two classes are equivalent regarding âŒ, then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⢠ð = (ð ClWWalksN ðº) |
erclwwlkn.r | ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð ⧠ð¢ â ð ⧠âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} |
Ref | Expression |
---|---|
erclwwlkneqlen | ⢠((ð â ð ⧠ð â ð) â (ð ⌠ð â (â¯âð) = (â¯âð))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.w | . . 3 ⢠ð = (ð ClWWalksN ðº) | |
2 | erclwwlkn.r | . . 3 ⢠⌠= {âšð¡, ð¢â© ⣠(ð¡ â ð ⧠ð¢ â ð ⧠âð â (0...ð)ð¡ = (ð¢ cyclShift ð))} | |
3 | 1, 2 | erclwwlkneq 29060 | . 2 ⢠((ð â ð ⧠ð â ð) â (ð ⌠ð â (ð â ð ⧠ð â ð ⧠âð â (0...ð)ð = (ð cyclShift ð)))) |
4 | fveq2 6846 | . . . . 5 ⢠(ð = (ð cyclShift ð) â (â¯âð) = (â¯â(ð cyclShift ð))) | |
5 | eqid 2733 | . . . . . . . . 9 ⢠(Vtxâðº) = (Vtxâðº) | |
6 | 5 | clwwlknwrd 29027 | . . . . . . . 8 ⢠(ð â (ð ClWWalksN ðº) â ð â Word (Vtxâðº)) |
7 | 6, 1 | eleq2s 2852 | . . . . . . 7 ⢠(ð â ð â ð â Word (Vtxâðº)) |
8 | 7 | adantl 483 | . . . . . 6 ⢠((ð â ð ⧠ð â ð) â ð â Word (Vtxâðº)) |
9 | elfzelz 13450 | . . . . . 6 ⢠(ð â (0...ð) â ð â â€) | |
10 | cshwlen 14696 | . . . . . 6 ⢠((ð â Word (Vtxâðº) ⧠ð â â€) â (â¯â(ð cyclShift ð)) = (â¯âð)) | |
11 | 8, 9, 10 | syl2an 597 | . . . . 5 ⢠(((ð â ð ⧠ð â ð) ⧠ð â (0...ð)) â (â¯â(ð cyclShift ð)) = (â¯âð)) |
12 | 4, 11 | sylan9eqr 2795 | . . . 4 ⢠((((ð â ð ⧠ð â ð) ⧠ð â (0...ð)) ⧠ð = (ð cyclShift ð)) â (â¯âð) = (â¯âð)) |
13 | 12 | rexlimdva2 3151 | . . 3 ⢠((ð â ð ⧠ð â ð) â (âð â (0...ð)ð = (ð cyclShift ð) â (â¯âð) = (â¯âð))) |
14 | 13 | 3impia 1118 | . 2 ⢠((ð â ð ⧠ð â ð ⧠âð â (0...ð)ð = (ð cyclShift ð)) â (â¯âð) = (â¯âð)) |
15 | 3, 14 | syl6bi 253 | 1 ⢠((ð â ð ⧠ð â ð) â (ð ⌠ð â (â¯âð) = (â¯âð))) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 ⧠wa 397 ⧠w3a 1088 = wceq 1542 â wcel 2107 âwrex 3070 class class class wbr 5109 {copab 5171 âcfv 6500 (class class class)co 7361 0cc0 11059 â€cz 12507 ...cfz 13433 â¯chash 14239 Word cword 14411 cyclShift ccsh 14685 Vtxcvtx 27996 ClWWalksN cclwwlkn 29017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-sup 9386 df-inf 9387 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-n0 12422 df-z 12508 df-uz 12772 df-rp 12924 df-fz 13434 df-fzo 13577 df-fl 13706 df-mod 13784 df-hash 14240 df-word 14412 df-concat 14468 df-substr 14538 df-pfx 14568 df-csh 14686 df-clwwlk 28975 df-clwwlkn 29018 |
This theorem is referenced by: erclwwlknsym 29063 erclwwlkntr 29064 |
Copyright terms: Public domain | W3C validator |