MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj2 Structured version   Visualization version   GIF version

Theorem eusvobj2 7128
Description: Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
eusvobj1.1 𝐵 ∈ V
Assertion
Ref Expression
eusvobj2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusvobj2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4621 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧})
2 eleq2 2878 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑥 ∈ {𝑧}))
3 abid 2780 . . . . . 6 (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ ∃𝑦𝐴 𝑥 = 𝐵)
4 velsn 4541 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
52, 3, 43bitr3g 316 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝑧))
6 nfre1 3265 . . . . . . . . 9 𝑦𝑦𝐴 𝑥 = 𝐵
76nfab 2961 . . . . . . . 8 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵}
87nfeq1 2970 . . . . . . 7 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧}
9 eusvobj1.1 . . . . . . . . 9 𝐵 ∈ V
109elabrex 6980 . . . . . . . 8 (𝑦𝐴𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵})
11 eleq2 2878 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝐵 ∈ {𝑧}))
129elsn 4540 . . . . . . . . . 10 (𝐵 ∈ {𝑧} ↔ 𝐵 = 𝑧)
13 eqcom 2805 . . . . . . . . . 10 (𝐵 = 𝑧𝑧 = 𝐵)
1412, 13bitri 278 . . . . . . . . 9 (𝐵 ∈ {𝑧} ↔ 𝑧 = 𝐵)
1511, 14syl6bb 290 . . . . . . . 8 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑧 = 𝐵))
1610, 15syl5ib 247 . . . . . . 7 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑦𝐴𝑧 = 𝐵))
178, 16ralrimi 3180 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → ∀𝑦𝐴 𝑧 = 𝐵)
18 eqeq1 2802 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝐵𝑧 = 𝐵))
1918ralbidv 3162 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑧 = 𝐵))
2017, 19syl5ibrcom 250 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 = 𝑧 → ∀𝑦𝐴 𝑥 = 𝐵))
215, 20sylbid 243 . . . 4 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
2221exlimiv 1931 . . 3 (∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
231, 22sylbi 220 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
24 euex 2637 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥𝑦𝐴 𝑥 = 𝐵)
25 rexn0 4412 . . . 4 (∃𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
2625exlimiv 1931 . . 3 (∃𝑥𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
27 r19.2z 4398 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
2827ex 416 . . 3 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2924, 26, 283syl 18 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
3023, 29impbid 215 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wex 1781  wcel 2111  ∃!weu 2628  {cab 2776  wne 2987  wral 3106  wrex 3107  Vcvv 3441  c0 4243  {csn 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-nul 4244  df-sn 4526
This theorem is referenced by:  eusvobj1  7129
  Copyright terms: Public domain W3C validator