MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofveu Structured version   Visualization version   GIF version

Theorem f1ofveu 7384
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ofveu ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem f1ofveu
StepHypRef Expression
1 f1ocnv 6815 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1of 6803 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
31, 2syl 17 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
4 feu 6739 . . 3 ((𝐹:𝐵𝐴𝐶𝐵) → ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹)
53, 4sylan 580 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹)
6 f1ocnvfvb 7257 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑥𝐴𝐶𝐵) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
763com23 1126 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
8 dff1o4 6811 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
98simprbi 496 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵)
10 fnopfvb 6915 . . . . . . 7 ((𝐹 Fn 𝐵𝐶𝐵) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
11103adant3 1132 . . . . . 6 ((𝐹 Fn 𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
129, 11syl3an1 1163 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
137, 12bitrd 279 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
14133expa 1118 . . 3 (((𝐹:𝐴1-1-onto𝐵𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
1514reubidva 3372 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (∃!𝑥𝐴 (𝐹𝑥) = 𝐶 ↔ ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹))
165, 15mpbird 257 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!wreu 3354  cop 4598  ccnv 5640   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  1arith2  16906  uspgredgiedg  29109  disjrdx  32527  ply1divalg3  35636  reuf1odnf  47112  reuf1od  47113  uptr2  49214
  Copyright terms: Public domain W3C validator