| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofveu | Structured version Visualization version GIF version | ||
| Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ofveu | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6815 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6803 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | feu 6739 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) | |
| 5 | 3, 4 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) |
| 6 | f1ocnvfvb 7257 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) | |
| 7 | 6 | 3com23 1126 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) |
| 8 | dff1o4 6811 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
| 9 | 8 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹 Fn 𝐵) |
| 10 | fnopfvb 6915 | . . . . . . 7 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) | |
| 11 | 10 | 3adant3 1132 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 12 | 9, 11 | syl3an1 1163 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 13 | 7, 12 | bitrd 279 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 14 | 13 | 3expa 1118 | . . 3 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 15 | 14 | reubidva 3372 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃!wreu 3354 〈cop 4598 ◡ccnv 5640 Fn wfn 6509 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: 1arith2 16906 uspgredgiedg 29109 disjrdx 32527 ply1divalg3 35636 reuf1odnf 47112 reuf1od 47113 uptr2 49214 |
| Copyright terms: Public domain | W3C validator |