| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ofveu | Structured version Visualization version GIF version | ||
| Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ofveu | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6860 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6848 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | feu 6784 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) | |
| 5 | 3, 4 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) |
| 6 | f1ocnvfvb 7299 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) | |
| 7 | 6 | 3com23 1127 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) |
| 8 | dff1o4 6856 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
| 9 | 8 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹 Fn 𝐵) |
| 10 | fnopfvb 6960 | . . . . . . 7 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) | |
| 11 | 10 | 3adant3 1133 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 12 | 9, 11 | syl3an1 1164 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 13 | 7, 12 | bitrd 279 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 14 | 13 | 3expa 1119 | . . 3 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 15 | 14 | reubidva 3396 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
| 16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃!wreu 3378 〈cop 4632 ◡ccnv 5684 Fn wfn 6556 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 |
| This theorem is referenced by: 1arith2 16966 uspgredgiedg 29192 disjrdx 32604 ply1divalg3 35647 reuf1odnf 47119 reuf1od 47120 |
| Copyright terms: Public domain | W3C validator |