![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ofveu | Structured version Visualization version GIF version |
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ofveu | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6874 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 6862 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | feu 6797 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) | |
5 | 3, 4 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) |
6 | f1ocnvfvb 7315 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) | |
7 | 6 | 3com23 1126 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) |
8 | dff1o4 6870 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
9 | 8 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹 Fn 𝐵) |
10 | fnopfvb 6974 | . . . . . . 7 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) | |
11 | 10 | 3adant3 1132 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
12 | 9, 11 | syl3an1 1163 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
13 | 7, 12 | bitrd 279 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
14 | 13 | 3expa 1118 | . . 3 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
15 | 14 | reubidva 3404 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃!wreu 3386 〈cop 4654 ◡ccnv 5699 Fn wfn 6568 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: 1arith2 16975 uspgredgiedg 29210 disjrdx 32613 ply1divalg3 35610 reuf1odnf 47022 reuf1od 47023 |
Copyright terms: Public domain | W3C validator |