MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofveu Structured version   Visualization version   GIF version

Theorem f1ofveu 7420
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ofveu ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem f1ofveu
StepHypRef Expression
1 f1ocnv 6856 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1of 6844 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
31, 2syl 17 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
4 feu 6778 . . 3 ((𝐹:𝐵𝐴𝐶𝐵) → ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹)
53, 4sylan 578 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹)
6 f1ocnvfvb 7294 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑥𝐴𝐶𝐵) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
763com23 1123 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
8 dff1o4 6852 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
98simprbi 495 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵)
10 fnopfvb 6956 . . . . . . 7 ((𝐹 Fn 𝐵𝐶𝐵) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
11103adant3 1129 . . . . . 6 ((𝐹 Fn 𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
129, 11syl3an1 1160 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
137, 12bitrd 278 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
14133expa 1115 . . 3 (((𝐹:𝐴1-1-onto𝐵𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
1514reubidva 3390 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (∃!𝑥𝐴 (𝐹𝑥) = 𝐶 ↔ ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹))
165, 15mpbird 256 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  ∃!wreu 3372  cop 4638  ccnv 5681   Fn wfn 6548  wf 6549  1-1-ontowf1o 6552  cfv 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561
This theorem is referenced by:  1arith2  16904  uspgredgiedg  29008  disjrdx  32402  reuf1odnf  46516  reuf1od  46517
  Copyright terms: Public domain W3C validator