![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ofveu | Structured version Visualization version GIF version |
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ofveu | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6838 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 6826 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | feu 6760 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 ⟨𝐶, 𝑥⟩ ∈ ◡𝐹) | |
5 | 3, 4 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 ⟨𝐶, 𝑥⟩ ∈ ◡𝐹) |
6 | f1ocnvfvb 7272 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) | |
7 | 6 | 3com23 1123 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) |
8 | dff1o4 6834 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
9 | 8 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹 Fn 𝐵) |
10 | fnopfvb 6938 | . . . . . . 7 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵) → ((◡𝐹‘𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ ◡𝐹)) | |
11 | 10 | 3adant3 1129 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ ◡𝐹)) |
12 | 9, 11 | syl3an1 1160 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ ◡𝐹)) |
13 | 7, 12 | bitrd 279 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ ◡𝐹)) |
14 | 13 | 3expa 1115 | . . 3 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ ◡𝐹)) |
15 | 14 | reubidva 3386 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 ⟨𝐶, 𝑥⟩ ∈ ◡𝐹)) |
16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃!wreu 3368 ⟨cop 4629 ◡ccnv 5668 Fn wfn 6531 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
This theorem is referenced by: 1arith2 16867 disjrdx 32326 reuf1odnf 46369 reuf1od 46370 |
Copyright terms: Public domain | W3C validator |