| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbafv212g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value, analogous to csbfv12 6876, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7399. (Contributed by AV, 4-Sep-2022.) |
| Ref | Expression |
|---|---|
| csbafv212g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3850 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = ⦋𝐴 / 𝑥⦌(𝐹''''𝐵)) | |
| 2 | csbeq1 3850 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
| 3 | csbeq1 3850 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | 2, 3 | afv2eq12d 47329 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 1, 4 | eqeq12d 2749 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵))) |
| 6 | vex 3442 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3871 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
| 8 | nfcsb1v 3871 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 9 | 7, 8 | nfafv2 47332 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) |
| 10 | csbeq1a 3861 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
| 11 | csbeq1a 3861 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 12 | 10, 11 | afv2eq12d 47329 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵)) |
| 13 | 6, 9, 12 | csbief 3881 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) |
| 14 | 5, 13 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⦋csb 3847 ''''cafv2 47322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-dfat 47233 df-afv2 47323 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |