| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbafv212g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value, analogous to csbfv12 6906, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7431. (Contributed by AV, 4-Sep-2022.) |
| Ref | Expression |
|---|---|
| csbafv212g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3865 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = ⦋𝐴 / 𝑥⦌(𝐹''''𝐵)) | |
| 2 | csbeq1 3865 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
| 3 | csbeq1 3865 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | 2, 3 | afv2eq12d 47216 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 1, 4 | eqeq12d 2745 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵))) |
| 6 | vex 3451 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3886 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
| 8 | nfcsb1v 3886 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 9 | 7, 8 | nfafv2 47219 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) |
| 10 | csbeq1a 3876 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
| 11 | csbeq1a 3876 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 12 | 10, 11 | afv2eq12d 47216 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵)) |
| 13 | 6, 9, 12 | csbief 3896 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) |
| 14 | 5, 13 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3862 ''''cafv2 47209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-dfat 47120 df-afv2 47210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |