Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbafv212g | Structured version Visualization version GIF version |
Description: Move class substitution in and out of a function value, analogous to csbfv12 6817, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7317. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
csbafv212g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3835 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = ⦋𝐴 / 𝑥⦌(𝐹''''𝐵)) | |
2 | csbeq1 3835 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3835 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 2, 3 | afv2eq12d 44707 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
5 | 1, 4 | eqeq12d 2754 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵))) |
6 | vex 3436 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3857 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
8 | nfcsb1v 3857 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | 7, 8 | nfafv2 44710 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) |
10 | csbeq1a 3846 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
11 | csbeq1a 3846 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
12 | 10, 11 | afv2eq12d 44707 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵)) |
13 | 6, 9, 12 | csbief 3867 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐹''''𝐵) = (⦋𝑦 / 𝑥⦌𝐹''''⦋𝑦 / 𝑥⦌𝐵) |
14 | 5, 13 | vtoclg 3505 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⦋csb 3832 ''''cafv2 44700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-dfat 44611 df-afv2 44701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |