Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbafv212g Structured version   Visualization version   GIF version

Theorem csbafv212g 42073
Description: Move class substitution in and out of a function value, analogous to csbfv12 6455, with a direct proof proposed by Mario Carneiro, analogous to csbov123 6919. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
csbafv212g (𝐴𝑉𝐴 / 𝑥(𝐹''''𝐵) = (𝐴 / 𝑥𝐹''''𝐴 / 𝑥𝐵))

Proof of Theorem csbafv212g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3731 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐹''''𝐵) = 𝐴 / 𝑥(𝐹''''𝐵))
2 csbeq1 3731 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3731 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3afv2eq12d 42069 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹''''𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹''''𝐴 / 𝑥𝐵))
51, 4eqeq12d 2814 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹''''𝐵) = (𝑦 / 𝑥𝐹''''𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹''''𝐵) = (𝐴 / 𝑥𝐹''''𝐴 / 𝑥𝐵)))
6 vex 3388 . . 3 𝑦 ∈ V
7 nfcsb1v 3744 . . . 4 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3744 . . . 4 𝑥𝑦 / 𝑥𝐵
97, 8nfafv2 42072 . . 3 𝑥(𝑦 / 𝑥𝐹''''𝑦 / 𝑥𝐵)
10 csbeq1a 3737 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3737 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11afv2eq12d 42069 . . 3 (𝑥 = 𝑦 → (𝐹''''𝐵) = (𝑦 / 𝑥𝐹''''𝑦 / 𝑥𝐵))
136, 9, 12csbief 3753 . 2 𝑦 / 𝑥(𝐹''''𝐵) = (𝑦 / 𝑥𝐹''''𝑦 / 𝑥𝐵)
145, 13vtoclg 3453 1 (𝐴𝑉𝐴 / 𝑥(𝐹''''𝐵) = (𝐴 / 𝑥𝐹''''𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  csb 3728  ''''cafv2 42062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-iota 6064  df-fun 6103  df-dfat 41973  df-afv2 42063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator