Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnxpdmdm Structured version   Visualization version   GIF version

Theorem fnxpdmdm 45210
Description: The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
fnxpdmdm (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)

Proof of Theorem fnxpdmdm
StepHypRef Expression
1 fndm 6520 . 2 (𝐹 Fn (𝐴 × 𝐴) → dom 𝐹 = (𝐴 × 𝐴))
2 dmeq 5801 . . 3 (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = dom (𝐴 × 𝐴))
3 dmxpid 5828 . . 3 dom (𝐴 × 𝐴) = 𝐴
42, 3eqtrdi 2795 . 2 (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)
51, 4syl 17 1 (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   × cxp 5578  dom cdm 5580   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-fn 6421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator