Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnxpdmdm Structured version   Visualization version   GIF version

Theorem fnxpdmdm 48022
Description: The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
fnxpdmdm (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)

Proof of Theorem fnxpdmdm
StepHypRef Expression
1 fndm 6652 . 2 (𝐹 Fn (𝐴 × 𝐴) → dom 𝐹 = (𝐴 × 𝐴))
2 dmeq 5896 . . 3 (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = dom (𝐴 × 𝐴))
3 dmxpid 5923 . . 3 dom (𝐴 × 𝐴) = 𝐴
42, 3eqtrdi 2785 . 2 (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)
51, 4syl 17 1 (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   × cxp 5665  dom cdm 5667   Fn wfn 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673  df-dm 5677  df-fn 6545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator