Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnxpdmdm Structured version   Visualization version   GIF version

Theorem fnxpdmdm 48004
Description: The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
fnxpdmdm (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)

Proof of Theorem fnxpdmdm
StepHypRef Expression
1 fndm 6672 . 2 (𝐹 Fn (𝐴 × 𝐴) → dom 𝐹 = (𝐴 × 𝐴))
2 dmeq 5917 . . 3 (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = dom (𝐴 × 𝐴))
3 dmxpid 5944 . . 3 dom (𝐴 × 𝐴) = 𝐴
42, 3eqtrdi 2791 . 2 (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)
51, 4syl 17 1 (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   × cxp 5687  dom cdm 5689   Fn wfn 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-dm 5699  df-fn 6566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator