| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnxpdmdm | Structured version Visualization version GIF version | ||
| Description: The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| fnxpdmdm | ⊢ (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 6652 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐴) → dom 𝐹 = (𝐴 × 𝐴)) | |
| 2 | dmeq 5896 | . . 3 ⊢ (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = dom (𝐴 × 𝐴)) | |
| 3 | dmxpid 5923 | . . 3 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
| 4 | 2, 3 | eqtrdi 2785 | . 2 ⊢ (dom 𝐹 = (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 × cxp 5665 dom cdm 5667 Fn wfn 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-dm 5677 df-fn 6545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |