Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege122 | Structured version Visualization version GIF version |
Description: If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 122 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege116.x | ⊢ 𝑋 ∈ 𝑈 |
frege118.y | ⊢ 𝑌 ∈ 𝑉 |
frege120.a | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
frege122 | ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege120.a | . . 3 ⊢ 𝐴 ∈ 𝑊 | |
2 | 1 | frege112 41536 | . 2 ⊢ (𝐴 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝐴) |
3 | frege116.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
4 | frege118.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
5 | 3, 4, 1 | frege121 41545 | . 2 ⊢ ((𝐴 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝐴) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴)))) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∪ cun 3889 class class class wbr 5078 I cid 5487 ◡ccnv 5587 Fun wfun 6424 ‘cfv 6430 t+ctcl 14677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-frege1 41351 ax-frege2 41352 ax-frege8 41370 ax-frege52a 41418 ax-frege58b 41462 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-fun 6432 |
This theorem is referenced by: frege123 41547 |
Copyright terms: Public domain | W3C validator |