| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege111 | Structured version Visualization version GIF version | ||
| Description: If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍 or precedes 𝑍 in the 𝑅-sequence. Proposition 111 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Revised by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege111.z | ⊢ 𝑍 ∈ 𝐴 |
| frege111.y | ⊢ 𝑌 ∈ 𝐵 |
| frege111.v | ⊢ 𝑉 ∈ 𝐶 |
| frege111.r | ⊢ 𝑅 ∈ 𝐷 |
| Ref | Expression |
|---|---|
| frege111 | ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege111.z | . . 3 ⊢ 𝑍 ∈ 𝐴 | |
| 2 | frege111.y | . . 3 ⊢ 𝑌 ∈ 𝐵 | |
| 3 | frege111.v | . . 3 ⊢ 𝑉 ∈ 𝐶 | |
| 4 | frege111.r | . . 3 ⊢ 𝑅 ∈ 𝐷 | |
| 5 | 1, 2, 3, 4 | frege108 43932 | . 2 ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)) |
| 6 | frege25 43778 | . 2 ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍 → 𝑍((t+‘𝑅) ∪ I )𝑉)))) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍 → 𝑍((t+‘𝑅) ∪ I )𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∪ cun 3920 class class class wbr 5115 I cid 5540 ‘cfv 6519 t+ctcl 14961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-frege1 43751 ax-frege2 43752 ax-frege8 43770 ax-frege28 43791 ax-frege31 43795 ax-frege41 43806 ax-frege52a 43818 ax-frege52c 43849 ax-frege58b 43862 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-seq 13977 df-trcl 14963 df-relexp 14996 df-he 43734 |
| This theorem is referenced by: frege129 43953 |
| Copyright terms: Public domain | W3C validator |