Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege111 Structured version   Visualization version   GIF version

Theorem frege111 43641
Description: If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍 or precedes 𝑍 in the 𝑅-sequence. Proposition 111 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Revised by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege111.z 𝑍𝐴
frege111.y 𝑌𝐵
frege111.v 𝑉𝐶
frege111.r 𝑅𝐷
Assertion
Ref Expression
frege111 (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍𝑍((t+‘𝑅) ∪ I )𝑉)))

Proof of Theorem frege111
StepHypRef Expression
1 frege111.z . . 3 𝑍𝐴
2 frege111.y . . 3 𝑌𝐵
3 frege111.v . . 3 𝑉𝐶
4 frege111.r . . 3 𝑅𝐷
51, 2, 3, 4frege108 43638 . 2 (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉𝑍((t+‘𝑅) ∪ I )𝑉))
6 frege25 43484 . 2 ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉𝑍((t+‘𝑅) ∪ I )𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍𝑍((t+‘𝑅) ∪ I )𝑉))))
75, 6ax-mp 5 1 (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍𝑍((t+‘𝑅) ∪ I )𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2099  cun 3945   class class class wbr 5153   I cid 5579  cfv 6554  t+ctcl 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-frege1 43457  ax-frege2 43458  ax-frege8 43476  ax-frege28 43497  ax-frege31 43501  ax-frege41 43512  ax-frege52a 43524  ax-frege52c 43555  ax-frege58b 43568
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-seq 14022  df-trcl 14992  df-relexp 15025  df-he 43440
This theorem is referenced by:  frege129  43659
  Copyright terms: Public domain W3C validator