| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege126 | Structured version Visualization version GIF version | ||
| Description: If 𝑀 follows 𝑌 in the 𝑅-sequence and if the procedure 𝑅 is single-valued, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 126 of [Frege1879] p. 81. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege123.x | ⊢ 𝑋 ∈ 𝑈 |
| frege123.y | ⊢ 𝑌 ∈ 𝑉 |
| frege124.m | ⊢ 𝑀 ∈ 𝑊 |
| frege124.r | ⊢ 𝑅 ∈ 𝑆 |
| Ref | Expression |
|---|---|
| frege126 | ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege124.m | . . 3 ⊢ 𝑀 ∈ 𝑊 | |
| 2 | frege123.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 3 | 1, 2 | frege114 43989 | . 2 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)) |
| 4 | frege123.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
| 5 | frege124.r | . . 3 ⊢ 𝑅 ∈ 𝑆 | |
| 6 | 2, 4, 1, 5 | frege125 44000 | . 2 ⊢ ((𝑋((t+‘𝑅) ∪ I )𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋))))) |
| 7 | 3, 6 | ax-mp 5 | 1 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → (¬ 𝑋(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2110 ∪ cun 3898 class class class wbr 5089 I cid 5508 ◡ccnv 5613 Fun wfun 6471 ‘cfv 6477 t+ctcl 14884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-frege1 43802 ax-frege2 43803 ax-frege8 43821 ax-frege28 43842 ax-frege31 43846 ax-frege41 43857 ax-frege52a 43869 ax-frege52c 43900 ax-frege58b 43913 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-seq 13901 df-trcl 14886 df-relexp 14919 df-he 43785 |
| This theorem is referenced by: frege127 44002 |
| Copyright terms: Public domain | W3C validator |