Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem1 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem1 44850
Description: Lemma 1 for fundcmpsurinj 44861. (Contributed by AV, 4-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.g 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
Assertion
Ref Expression
fundcmpsurinjlem1 ran 𝐺 = 𝑃
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝐺(𝑥,𝑧)

Proof of Theorem fundcmpsurinjlem1
StepHypRef Expression
1 fundcmpsurinj.g . . 3 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
21rnmpt 5864 . 2 ran 𝐺 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
3 fundcmpsurinj.p . 2 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
42, 3eqtr4i 2769 1 ran 𝐺 = 𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  wrex 3065  {csn 4561  cmpt 5157  ccnv 5588  ran crn 5590  cima 5592  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  fundcmpsurinjlem2  44851
  Copyright terms: Public domain W3C validator