Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fundcmpsurinj 44722. (Contributed by AV, 4-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) |
Ref | Expression |
---|---|
fundcmpsurinjlem1 | ⊢ ran 𝐺 = 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) | |
2 | 1 | rnmpt 5852 | . 2 ⊢ ran 𝐺 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
3 | fundcmpsurinj.p | . 2 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
4 | 2, 3 | eqtr4i 2770 | 1 ⊢ ran 𝐺 = 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 {cab 2716 ∃wrex 3065 {csn 4558 ↦ cmpt 5152 ◡ccnv 5578 ran crn 5580 “ cima 5582 ‘cfv 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5153 df-cnv 5587 df-dm 5589 df-rn 5590 |
This theorem is referenced by: fundcmpsurinjlem2 44712 |
Copyright terms: Public domain | W3C validator |