Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem1 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem1 47331
Description: Lemma 1 for fundcmpsurinj 47342. (Contributed by AV, 4-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.g 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
Assertion
Ref Expression
fundcmpsurinjlem1 ran 𝐺 = 𝑃
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝐺(𝑥,𝑧)

Proof of Theorem fundcmpsurinjlem1
StepHypRef Expression
1 fundcmpsurinj.g . . 3 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
21rnmpt 5950 . 2 ran 𝐺 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
3 fundcmpsurinj.p . 2 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
42, 3eqtr4i 2760 1 ran 𝐺 = 𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2712  wrex 3059  {csn 4608  cmpt 5207  ccnv 5666  ran crn 5668  cima 5670  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-mpt 5208  df-cnv 5675  df-dm 5677  df-rn 5678
This theorem is referenced by:  fundcmpsurinjlem2  47332
  Copyright terms: Public domain W3C validator