| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fundcmpsurinj 47403. (Contributed by AV, 4-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) |
| Ref | Expression |
|---|---|
| fundcmpsurinjlem1 | ⊢ ran 𝐺 = 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fundcmpsurinj.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 2 | 1 | rnmpt 5942 | . 2 ⊢ ran 𝐺 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| 3 | fundcmpsurinj.p | . 2 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 4 | 2, 3 | eqtr4i 2762 | 1 ⊢ ran 𝐺 = 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2714 ∃wrex 3061 {csn 4606 ↦ cmpt 5206 ◡ccnv 5658 ran crn 5660 “ cima 5662 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: fundcmpsurinjlem2 47393 |
| Copyright terms: Public domain | W3C validator |