Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem2 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem2 44851
Description: Lemma 2 for fundcmpsurinj 44861. (Contributed by AV, 4-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.g 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
Assertion
Ref Expression
fundcmpsurinjlem2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐺:𝐴onto𝑃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝐺(𝑥,𝑧)   𝑉(𝑧)

Proof of Theorem fundcmpsurinjlem2
StepHypRef Expression
1 fnex 7093 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
2 cnvexg 7771 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ V)
3 imaexg 7762 . . . . 5 (𝐹 ∈ V → (𝐹 “ {(𝐹𝑥)}) ∈ V)
41, 2, 33syl 18 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (𝐹 “ {(𝐹𝑥)}) ∈ V)
54ralrimivw 3104 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → ∀𝑥𝐴 (𝐹 “ {(𝐹𝑥)}) ∈ V)
6 fundcmpsurinj.g . . . 4 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
76fnmpt 6573 . . 3 (∀𝑥𝐴 (𝐹 “ {(𝐹𝑥)}) ∈ V → 𝐺 Fn 𝐴)
85, 7syl 17 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐺 Fn 𝐴)
9 fundcmpsurinj.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
109, 6fundcmpsurinjlem1 44850 . 2 ran 𝐺 = 𝑃
11 df-fo 6439 . 2 (𝐺:𝐴onto𝑃 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝑃))
128, 10, 11sylanblrc 590 1 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐺:𝐴onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3432  {csn 4561  cmpt 5157  ccnv 5588  ran crn 5590  cima 5592   Fn wfn 6428  ontowfo 6431  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  fundcmpsurbijinjpreimafv  44859
  Copyright terms: Public domain W3C validator