Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem2 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem2 47387
Description: Lemma 2 for fundcmpsurinj 47397. (Contributed by AV, 4-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.g 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
Assertion
Ref Expression
fundcmpsurinjlem2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐺:𝐴onto𝑃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝐺(𝑥,𝑧)   𝑉(𝑧)

Proof of Theorem fundcmpsurinjlem2
StepHypRef Expression
1 fnex 7153 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
2 cnvexg 7857 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ V)
3 imaexg 7846 . . . . 5 (𝐹 ∈ V → (𝐹 “ {(𝐹𝑥)}) ∈ V)
41, 2, 33syl 18 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (𝐹 “ {(𝐹𝑥)}) ∈ V)
54ralrimivw 3125 . . 3 ((𝐹 Fn 𝐴𝐴𝑉) → ∀𝑥𝐴 (𝐹 “ {(𝐹𝑥)}) ∈ V)
6 fundcmpsurinj.g . . . 4 𝐺 = (𝑥𝐴 ↦ (𝐹 “ {(𝐹𝑥)}))
76fnmpt 6622 . . 3 (∀𝑥𝐴 (𝐹 “ {(𝐹𝑥)}) ∈ V → 𝐺 Fn 𝐴)
85, 7syl 17 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐺 Fn 𝐴)
9 fundcmpsurinj.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
109, 6fundcmpsurinjlem1 47386 . 2 ran 𝐺 = 𝑃
11 df-fo 6488 . 2 (𝐺:𝐴onto𝑃 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝑃))
128, 10, 11sylanblrc 590 1 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐺:𝐴onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3436  {csn 4577  cmpt 5173  ccnv 5618  ran crn 5620  cima 5622   Fn wfn 6477  ontowfo 6480  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  fundcmpsurbijinjpreimafv  47395
  Copyright terms: Public domain W3C validator