| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fundcmpsurinj 47410. (Contributed by AV, 4-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) |
| Ref | Expression |
|---|---|
| fundcmpsurinjlem2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnex 7191 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 2 | cnvexg 7900 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 3 | imaexg 7889 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
| 5 | 4 | ralrimivw 3129 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
| 6 | fundcmpsurinj.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 7 | 6 | fnmpt 6658 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V → 𝐺 Fn 𝐴) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
| 9 | fundcmpsurinj.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 10 | 9, 6 | fundcmpsurinjlem1 47399 | . 2 ⊢ ran 𝐺 = 𝑃 |
| 11 | df-fo 6517 | . 2 ⊢ (𝐺:𝐴–onto→𝑃 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝑃)) | |
| 12 | 8, 10, 11 | sylanblrc 590 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3447 {csn 4589 ↦ cmpt 5188 ◡ccnv 5637 ran crn 5639 “ cima 5641 Fn wfn 6506 –onto→wfo 6509 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: fundcmpsurbijinjpreimafv 47408 |
| Copyright terms: Public domain | W3C validator |