![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fundcmpsurinj 46077. (Contributed by AV, 4-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) |
Ref | Expression |
---|---|
fundcmpsurinjlem2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnex 7219 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
2 | cnvexg 7915 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
3 | imaexg 7906 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
5 | 4 | ralrimivw 3151 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
6 | fundcmpsurinj.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) | |
7 | 6 | fnmpt 6691 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V → 𝐺 Fn 𝐴) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
9 | fundcmpsurinj.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
10 | 9, 6 | fundcmpsurinjlem1 46066 | . 2 ⊢ ran 𝐺 = 𝑃 |
11 | df-fo 6550 | . 2 ⊢ (𝐺:𝐴–onto→𝑃 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝑃)) | |
12 | 8, 10, 11 | sylanblrc 591 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3062 ∃wrex 3071 Vcvv 3475 {csn 4629 ↦ cmpt 5232 ◡ccnv 5676 ran crn 5678 “ cima 5680 Fn wfn 6539 –onto→wfo 6542 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 |
This theorem is referenced by: fundcmpsurbijinjpreimafv 46075 |
Copyright terms: Public domain | W3C validator |