| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fundcmpsurinj 47414. (Contributed by AV, 4-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) |
| Ref | Expression |
|---|---|
| fundcmpsurinjlem2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnex 7194 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 2 | cnvexg 7903 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 3 | imaexg 7892 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
| 5 | 4 | ralrimivw 3130 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
| 6 | fundcmpsurinj.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 7 | 6 | fnmpt 6661 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V → 𝐺 Fn 𝐴) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
| 9 | fundcmpsurinj.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 10 | 9, 6 | fundcmpsurinjlem1 47403 | . 2 ⊢ ran 𝐺 = 𝑃 |
| 11 | df-fo 6520 | . 2 ⊢ (𝐺:𝐴–onto→𝑃 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝑃)) | |
| 12 | 8, 10, 11 | sylanblrc 590 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3450 {csn 4592 ↦ cmpt 5191 ◡ccnv 5640 ran crn 5642 “ cima 5644 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: fundcmpsurbijinjpreimafv 47412 |
| Copyright terms: Public domain | W3C validator |