| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fundcmpsurinj 47390. (Contributed by AV, 4-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) |
| Ref | Expression |
|---|---|
| fundcmpsurinjlem2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnex 7214 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 2 | cnvexg 7925 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 3 | imaexg 7914 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
| 5 | 4 | ralrimivw 3137 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V) |
| 6 | fundcmpsurinj.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) | |
| 7 | 6 | fnmpt 6683 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑥)}) ∈ V → 𝐺 Fn 𝐴) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
| 9 | fundcmpsurinj.p | . . 3 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 10 | 9, 6 | fundcmpsurinjlem1 47379 | . 2 ⊢ ran 𝐺 = 𝑃 |
| 11 | df-fo 6542 | . 2 ⊢ (𝐺:𝐴–onto→𝑃 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝑃)) | |
| 12 | 8, 10, 11 | sylanblrc 590 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 Vcvv 3464 {csn 4606 ↦ cmpt 5206 ◡ccnv 5658 ran crn 5660 “ cima 5662 Fn wfn 6531 –onto→wfo 6534 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: fundcmpsurbijinjpreimafv 47388 |
| Copyright terms: Public domain | W3C validator |