Proof of Theorem elsetpreimafveq
Step | Hyp | Ref
| Expression |
1 | | eqeq2 2750 |
. . . . 5
⊢ ((𝐹‘𝑋) = (𝐹‘𝑌) → ((𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑥) = (𝐹‘𝑌))) |
2 | 1 | rabbidv 3404 |
. . . 4
⊢ ((𝐹‘𝑋) = (𝐹‘𝑌) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑌)}) |
3 | 2 | adantl 481 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) ∧ (𝐹‘𝑋) = (𝐹‘𝑌)) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑌)}) |
4 | | id 22 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → 𝐹 Fn 𝐴) |
5 | | simpl 482 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) → 𝑆 ∈ 𝑃) |
6 | | simpl 482 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅) → 𝑋 ∈ 𝑆) |
7 | 4, 5, 6 | 3anim123i 1149 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) → (𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆)) |
8 | 7 | adantr 480 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) ∧ (𝐹‘𝑋) = (𝐹‘𝑌)) → (𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆)) |
9 | | setpreimafvex.p |
. . . . 5
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
10 | 9 | elsetpreimafvrab 44734 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → 𝑆 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)}) |
11 | 8, 10 | syl 17 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) ∧ (𝐹‘𝑋) = (𝐹‘𝑌)) → 𝑆 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)}) |
12 | | simpr 484 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) → 𝑅 ∈ 𝑃) |
13 | | simpr 484 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅) → 𝑌 ∈ 𝑅) |
14 | 4, 12, 13 | 3anim123i 1149 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) → (𝐹 Fn 𝐴 ∧ 𝑅 ∈ 𝑃 ∧ 𝑌 ∈ 𝑅)) |
15 | 14 | adantr 480 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) ∧ (𝐹‘𝑋) = (𝐹‘𝑌)) → (𝐹 Fn 𝐴 ∧ 𝑅 ∈ 𝑃 ∧ 𝑌 ∈ 𝑅)) |
16 | 9 | elsetpreimafvrab 44734 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑅 ∈ 𝑃 ∧ 𝑌 ∈ 𝑅) → 𝑅 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑌)}) |
17 | 15, 16 | syl 17 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) ∧ (𝐹‘𝑋) = (𝐹‘𝑌)) → 𝑅 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑌)}) |
18 | 3, 11, 17 | 3eqtr4d 2788 |
. 2
⊢ (((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) ∧ (𝐹‘𝑋) = (𝐹‘𝑌)) → 𝑆 = 𝑅) |
19 | 18 | ex 412 |
1
⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑆 = 𝑅)) |