Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafveq Structured version   Visualization version   GIF version

Theorem elsetpreimafveq 45579
Description: If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafveq ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑆 = 𝑅))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑅,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafveq
StepHypRef Expression
1 eqeq2 2748 . . . . 5 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑥) = (𝐹𝑌)))
21rabbidv 3415 . . . 4 ((𝐹𝑋) = (𝐹𝑌) → {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
32adantl 482 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
4 id 22 . . . . . 6 (𝐹 Fn 𝐴𝐹 Fn 𝐴)
5 simpl 483 . . . . . 6 ((𝑆𝑃𝑅𝑃) → 𝑆𝑃)
6 simpl 483 . . . . . 6 ((𝑋𝑆𝑌𝑅) → 𝑋𝑆)
74, 5, 63anim123i 1151 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → (𝐹 Fn 𝐴𝑆𝑃𝑋𝑆))
87adantr 481 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹 Fn 𝐴𝑆𝑃𝑋𝑆))
9 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
109elsetpreimafvrab 45576 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
118, 10syl 17 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
12 simpr 485 . . . . . 6 ((𝑆𝑃𝑅𝑃) → 𝑅𝑃)
13 simpr 485 . . . . . 6 ((𝑋𝑆𝑌𝑅) → 𝑌𝑅)
144, 12, 133anim123i 1151 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → (𝐹 Fn 𝐴𝑅𝑃𝑌𝑅))
1514adantr 481 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹 Fn 𝐴𝑅𝑃𝑌𝑅))
169elsetpreimafvrab 45576 . . . 4 ((𝐹 Fn 𝐴𝑅𝑃𝑌𝑅) → 𝑅 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
1715, 16syl 17 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑅 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
183, 11, 173eqtr4d 2786 . 2 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑆 = 𝑅)
1918ex 413 1 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑆 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wrex 3073  {crab 3407  {csn 4586  ccnv 5632  cima 5636   Fn wfn 6491  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-fv 6504
This theorem is referenced by:  imasetpreimafvbijlemf1  45586
  Copyright terms: Public domain W3C validator