Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafveq Structured version   Visualization version   GIF version

Theorem elsetpreimafveq 47398
Description: If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafveq ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑆 = 𝑅))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑅,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafveq
StepHypRef Expression
1 eqeq2 2741 . . . . 5 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑥) = (𝐹𝑌)))
21rabbidv 3413 . . . 4 ((𝐹𝑋) = (𝐹𝑌) → {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
32adantl 481 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
4 id 22 . . . . . 6 (𝐹 Fn 𝐴𝐹 Fn 𝐴)
5 simpl 482 . . . . . 6 ((𝑆𝑃𝑅𝑃) → 𝑆𝑃)
6 simpl 482 . . . . . 6 ((𝑋𝑆𝑌𝑅) → 𝑋𝑆)
74, 5, 63anim123i 1151 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → (𝐹 Fn 𝐴𝑆𝑃𝑋𝑆))
87adantr 480 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹 Fn 𝐴𝑆𝑃𝑋𝑆))
9 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
109elsetpreimafvrab 47395 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
118, 10syl 17 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
12 simpr 484 . . . . . 6 ((𝑆𝑃𝑅𝑃) → 𝑅𝑃)
13 simpr 484 . . . . . 6 ((𝑋𝑆𝑌𝑅) → 𝑌𝑅)
144, 12, 133anim123i 1151 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → (𝐹 Fn 𝐴𝑅𝑃𝑌𝑅))
1514adantr 480 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹 Fn 𝐴𝑅𝑃𝑌𝑅))
169elsetpreimafvrab 47395 . . . 4 ((𝐹 Fn 𝐴𝑅𝑃𝑌𝑅) → 𝑅 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
1715, 16syl 17 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑅 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
183, 11, 173eqtr4d 2774 . 2 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑆 = 𝑅)
1918ex 412 1 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑆 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3405  {csn 4589  ccnv 5637  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  imasetpreimafvbijlemf1  47405
  Copyright terms: Public domain W3C validator