Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafveq Structured version   Visualization version   GIF version

Theorem elsetpreimafveq 46364
Description: If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafveq ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑆 = 𝑅))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑅,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafveq
StepHypRef Expression
1 eqeq2 2743 . . . . 5 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑥) = (𝐹𝑌)))
21rabbidv 3439 . . . 4 ((𝐹𝑋) = (𝐹𝑌) → {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
32adantl 481 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
4 id 22 . . . . . 6 (𝐹 Fn 𝐴𝐹 Fn 𝐴)
5 simpl 482 . . . . . 6 ((𝑆𝑃𝑅𝑃) → 𝑆𝑃)
6 simpl 482 . . . . . 6 ((𝑋𝑆𝑌𝑅) → 𝑋𝑆)
74, 5, 63anim123i 1150 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → (𝐹 Fn 𝐴𝑆𝑃𝑋𝑆))
87adantr 480 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹 Fn 𝐴𝑆𝑃𝑋𝑆))
9 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
109elsetpreimafvrab 46361 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
118, 10syl 17 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
12 simpr 484 . . . . . 6 ((𝑆𝑃𝑅𝑃) → 𝑅𝑃)
13 simpr 484 . . . . . 6 ((𝑋𝑆𝑌𝑅) → 𝑌𝑅)
144, 12, 133anim123i 1150 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → (𝐹 Fn 𝐴𝑅𝑃𝑌𝑅))
1514adantr 480 . . . 4 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹 Fn 𝐴𝑅𝑃𝑌𝑅))
169elsetpreimafvrab 46361 . . . 4 ((𝐹 Fn 𝐴𝑅𝑃𝑌𝑅) → 𝑅 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
1715, 16syl 17 . . 3 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑅 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑌)})
183, 11, 173eqtr4d 2781 . 2 (((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑆 = 𝑅)
1918ex 412 1 ((𝐹 Fn 𝐴 ∧ (𝑆𝑃𝑅𝑃) ∧ (𝑋𝑆𝑌𝑅)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑆 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wrex 3069  {crab 3431  {csn 4628  ccnv 5675  cima 5679   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  imasetpreimafvbijlemf1  46371
  Copyright terms: Public domain W3C validator