MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprcALT Structured version   Visualization version   GIF version

Theorem fvprcALT 6815
Description: Alternate proof of fvprc 6814 using ax-pow 5301 instead of ax-pr 5368. (Contributed by NM, 20-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvprcALT 𝐴 ∈ V → (𝐹𝐴) = ∅)

Proof of Theorem fvprcALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brprcneuALT 6813 . 2 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
2 tz6.12-2 6809 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
31, 2syl 17 1 𝐴 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  ∃!weu 2563  Vcvv 3436  c0 4280   class class class wbr 5089  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242  ax-pow 5301
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator