MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprcALT Structured version   Visualization version   GIF version

Theorem fvprcALT 6749
Description: Alternate proof of fvprc 6748 using ax-pow 5283 instead of ax-sep 5218 and ax-pr 5347. (Contributed by NM, 20-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvprcALT 𝐴 ∈ V → (𝐹𝐴) = ∅)

Proof of Theorem fvprcALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brprcneu 6747 . 2 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
2 tz6.12-2 6745 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
31, 2syl 17 1 𝐴 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  ∃!weu 2568  Vcvv 3422  c0 4253   class class class wbr 5070  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator