MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprcALT Structured version   Visualization version   GIF version

Theorem fvprcALT 6884
Description: Alternate proof of fvprc 6883 using ax-pow 5363 instead of ax-pr 5427. (Contributed by NM, 20-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvprcALT 𝐴 ∈ V → (𝐹𝐴) = ∅)

Proof of Theorem fvprcALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brprcneuALT 6882 . 2 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
2 tz6.12-2 6879 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
31, 2syl 17 1 𝐴 ∈ V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  ∃!weu 2561  Vcvv 3473  c0 4322   class class class wbr 5148  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-nul 5306  ax-pow 5363
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator