| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvressn | Structured version Visualization version GIF version | ||
| Description: The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| Ref | Expression |
|---|---|
| fvressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4608 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
| 2 | 1 | fvresd 6837 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4571 ↾ cres 5613 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-res 5623 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: fvunsn 7108 funressndmfvrn 47075 |
| Copyright terms: Public domain | W3C validator |