| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvressn | Structured version Visualization version GIF version | ||
| Description: The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| Ref | Expression |
|---|---|
| fvressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4627 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
| 2 | 1 | fvresd 6881 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 ↾ cres 5643 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: fvn0fvelrnOLD 7138 fvunsn 7156 funressndmfvrn 47049 |
| Copyright terms: Public domain | W3C validator |