Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvressn | Structured version Visualization version GIF version |
Description: The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4595 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
2 | 1 | fvresd 6794 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {csn 4561 ↾ cres 5591 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 |
This theorem is referenced by: fvn0fvelrn 7035 fvunsn 7051 funressndmfvrn 44538 |
Copyright terms: Public domain | W3C validator |