![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvressn | Structured version Visualization version GIF version |
Description: The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
fvressn | ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4682 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
2 | 1 | fvresd 6940 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 ↾ cres 5702 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fvn0fvelrnOLD 7197 fvunsn 7213 funressndmfvrn 46959 |
Copyright terms: Public domain | W3C validator |