MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvressn Structured version   Visualization version   GIF version

Theorem fvressn 7104
Description: The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
fvressn (𝑋𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹𝑋))

Proof of Theorem fvressn
StepHypRef Expression
1 snidg 4614 . 2 (𝑋𝑉𝑋 ∈ {𝑋})
21fvresd 6851 1 (𝑋𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4577  cres 5623  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-res 5633  df-iota 6445  df-fv 6497
This theorem is referenced by:  fvunsn  7122  funressndmfvrn  47206
  Copyright terms: Public domain W3C validator