Home | Metamath
Proof Explorer Theorem List (p. 72 of 460) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28855) |
Hilbert Space Explorer
(28856-30378) |
Users' Mathboxes
(30379-45991) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isores2 7101 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) | ||
Theorem | isores1 7102 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)) | ||
Theorem | isores3 7103 | Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾 ⊆ 𝐴 ∧ 𝑋 = (𝐻 “ 𝐾)) → (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)) | ||
Theorem | isotr 7104 | Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺 ∘ 𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶)) | ||
Theorem | isomin 7105 | Isomorphisms preserve minimal elements. Note that (◡𝑅 “ {𝐷}) is Takeuti and Zaring's idiom for the initial segment {𝑥 ∣ 𝑥𝑅𝐷}. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.) |
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) | ||
Theorem | isoini 7106 | Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.) |
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) | ||
Theorem | isoini2 7107 | Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
⊢ 𝐶 = (𝐴 ∩ (◡𝑅 “ {𝑋})) & ⊢ 𝐷 = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)})) ⇒ ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)) | ||
Theorem | isofrlem 7108* | Lemma for isofr 7110. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||
Theorem | isoselem 7109* | Lemma for isose 7111. (Contributed by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑅 Se 𝐴 → 𝑆 Se 𝐵)) | ||
Theorem | isofr 7110 | An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) | ||
Theorem | isose 7111 | An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) | ||
Theorem | isofr2 7112 | A weak form of isofr 7110 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||
Theorem | isopolem 7113 | Lemma for isopo 7114. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) | ||
Theorem | isopo 7114 | An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐵)) | ||
Theorem | isosolem 7115 | Lemma for isoso 7116. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | ||
Theorem | isoso 7116 | An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵)) | ||
Theorem | isowe 7117 | An isomorphism preserves well-ordering. Proposition 6.32(3) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | ||
Theorem | isowe2 7118* | A weak form of isowe 7117 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
Theorem | f1oiso 7119* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.) |
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | f1oiso2 7120* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))} ⇒ ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | f1owe 7121* | Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
Theorem | weniso 7122 | A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴)) | ||
Theorem | weisoeq 7123 | Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 7701. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) | ||
Theorem | weisoeq2 7124 | Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7702. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) | ||
Theorem | knatar 7125* | The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice 𝒫 𝐴. (Contributed by Mario Carneiro, 11-Jun-2015.) |
⊢ 𝑋 = ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝑋 ⊆ 𝐴 ∧ (𝐹‘𝑋) = 𝑋)) | ||
Theorem | canth 7126 | No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8722. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7127 for a counterexample. (Use nex 1807 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 | ||
Theorem | ncanth 7127 |
Cantor's theorem fails for the universal class (which is not a set but a
proper class by vprc 5183). Specifically, the identity function maps
the
universe onto its power class. Compare canth 7126 that works for sets.
This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3679): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4793). See also the remark in ru 3679 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.) |
⊢ I :V–onto→𝒫 V | ||
Syntax | crio 7128 | Extend class notation with restricted description binder. |
class (℩𝑥 ∈ 𝐴 𝜑) | ||
Definition | df-riota 7129 | Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6297. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | riotaeqdv 7130* | Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | riotabidv 7131* | Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | riotaeqbidv 7132* | Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | riotaex 7133 | Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V | ||
Theorem | riotav 7134 | An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) | ||
Theorem | riotauni 7135 | Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
Theorem | nfriota1 7136* | The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | ||
Theorem | nfriotadw 7137* | Deduction version of nfriota 7142 with a disjoint variable condition, which contrary to nfriotad 7141 does not require ax-13 2372. (Contributed by NM, 18-Feb-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | cbvriotaw 7138* | Change bound variable in a restricted description binder. Version of cbvriota 7143 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvriotavw 7139* | Change bound variable in a restricted description binder. Version of cbvriotav 7144 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvriotavwOLD 7140* | Obsolete version of cbvriotavw 7139 as of 30-Sep-2024. (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfriotad 7141 | Deduction version of nfriota 7142. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfriotadw 7137 when possible. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | nfriota 7142* | A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) | ||
Theorem | cbvriota 7143* | Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvriotaw 7138 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvriotav 7144* | Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvriotavw 7139 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
Theorem | csbriota 7145* | Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
Theorem | riotacl2 7146 | Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
Theorem | riotacl 7147* | Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | ||
Theorem | riotasbc 7148 | Substitution law for descriptions. Compare iotasbc 41597. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | ||
Theorem | riotabidva 7149* | Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 3379 analog.) (Contributed by NM, 17-Jan-2012.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | riotabiia 7150 | Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3373 analog.) (Contributed by NM, 16-Jan-2012.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) | ||
Theorem | riota1 7151* | Property of restricted iota. Compare iota1 6316. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) | ||
Theorem | riota1a 7152 | Property of iota. (Contributed by NM, 23-Aug-2011.) |
⊢ ((𝑥 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | ||
Theorem | riota2df 7153* | A deduction version of riota2f 7154. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) | ||
Theorem | riota2f 7154* | This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
Theorem | riota2 7155* | This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
Theorem | riotaeqimp 7156* | If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.) |
⊢ 𝐼 = (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ 𝐽 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑌 = 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐼 = 𝐽) → 𝑋 = 𝑌) | ||
Theorem | riotaprop 7157* | Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) | ||
Theorem | riota5f 7158* | A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
Theorem | riota5 7159* | A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
Theorem | riotass2 7160* | Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | riotass 7161* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | moriotass 7162* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | snriota 7163 | A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) | ||
Theorem | riotaxfrd 7164* | Change the variable 𝑥 in the expression for "the unique 𝑥 such that 𝜓 " to another variable 𝑦 contained in expression 𝐵. Use reuhypd 5286 to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ (℩𝑦 ∈ 𝐴 𝜒) ∈ 𝐴) → 𝐶 ∈ 𝐴) & ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = (℩𝑦 ∈ 𝐴 𝜒) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐴 𝑥 = 𝐵) ⇒ ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (℩𝑥 ∈ 𝐴 𝜓) = 𝐶) | ||
Theorem | eusvobj2 7165* | Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
Theorem | eusvobj1 7166* | Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
Theorem | f1ofveu 7167* | There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) | ||
Theorem | f1ocnvfv3 7168* | Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) = (℩𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶)) | ||
Theorem | riotaund 7169* | Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.) |
⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | ||
Theorem | riotassuni 7170* | The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | ||
Theorem | riotaclb 7171* | Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) (Revised by NM, 13-Sep-2018.) |
⊢ (¬ ∅ ∈ 𝐴 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) | ||
Syntax | co 7172 | Extend class notation to include the value of an operation 𝐹 (such as +) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 10951.) |
class (𝐴𝐹𝐵) | ||
Syntax | coprab 7173 | Extend class notation to include class abstraction (class builder) of nested ordered pairs. |
class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | ||
Syntax | cmpo 7174 | Extend the definition of a class to include maps-to notation for defining an operation via a rule. |
class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
Definition | df-ov 7175 | Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2, the expression (3 + 2) can be proved to equal 5 (see 3p2e5 11869). This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 7211 and ovprc2 7212. On the other hand, we often find uses for this definition when 𝐹 is a proper class, such as +o in oav 8169. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 7176. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | ||
Definition | df-oprab 7176* | Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7175 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7327. (Contributed by NM, 12-Mar-1995.) |
⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | ||
Definition | df-mpo 7177* | Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5111 for two arguments. (Contributed by NM, 17-Feb-2008.) |
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | ||
Theorem | oveq 7178 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
Theorem | oveq1 7179 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | ||
Theorem | oveq2 7180 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ (𝐴 = 𝐵 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | ||
Theorem | oveq12 7181 | Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveq1i 7182 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) | ||
Theorem | oveq2i 7183 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝐹𝐴) = (𝐶𝐹𝐵) | ||
Theorem | oveq12i 7184 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) | ||
Theorem | oveqi 7185 | Equality inference for operation value. (Contributed by NM, 24-Nov-2007.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝐴𝐷) = (𝐶𝐵𝐷) | ||
Theorem | oveq123i 7186 | Equality inference for operation value. (Contributed by FL, 11-Jul-2010.) |
⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 & ⊢ 𝐹 = 𝐺 ⇒ ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) | ||
Theorem | oveq1d 7187 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | ||
Theorem | oveq2d 7188 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | ||
Theorem | oveqd 7189 | Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | ||
Theorem | oveq12d 7190 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveqan12d 7191 | Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveqan12rd 7192 | Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
Theorem | oveq123d 7193 | Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) | ||
Theorem | fvoveq1d 7194 | Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | ||
Theorem | fvoveq1 7195 | Equality theorem for nested function and operation value. Closed form of fvoveq1d 7194. (Contributed by AV, 23-Jul-2022.) |
⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | ||
Theorem | ovanraleqv 7196* | Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) | ||
Theorem | imbrov2fvoveq 7197 | Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.) |
⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) | ||
Theorem | ovrspc2v 7198* | If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.) |
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶) | ||
Theorem | oveqrspc2v 7199* | Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) | ||
Theorem | oveqdr 7200 | Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |