Home | Metamath
Proof Explorer Theorem List (p. 72 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29646) |
Hilbert Space Explorer
(29647-31169) |
Users' Mathboxes
(31170-46966) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fressnfv 7101 | The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹‘𝐵) ∈ 𝐶)) | ||
Theorem | fvrnressn 7102 | If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) | ||
Theorem | fvressn 7103 | The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) | ||
Theorem | fvn0fvelrnOLD 7104 | Obsolete version of fvn0fvelrn 6869 as of 13-Jan-2025. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) | ||
Theorem | fvconst 7105 | The value of a constant function. (Contributed by NM, 30-May-1999.) |
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) = 𝐵) | ||
Theorem | fnsnr 7106 | If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = ⟨𝐴, (𝐹‘𝐴)⟩)) | ||
Theorem | fnsnb 7107 | A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) | ||
Theorem | fmptsn 7108* | Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | ||
Theorem | fmptsng 7109* | Express a singleton function in maps-to notation. Version of fmptsn 7108 allowing the value 𝐵 to depend on the variable 𝑥. (Contributed by AV, 27-Feb-2019.) |
⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | ||
Theorem | fmptsnd 7110* | Express a singleton function in maps-to notation. Deduction form of fmptsng 7109. (Contributed by AV, 4-Aug-2019.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | ||
Theorem | fmptap 7111* | Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑅 ∪ {𝐴}) = 𝑆 & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥 ∈ 𝑆 ↦ 𝐶) | ||
Theorem | fmptapd 7112* | Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) (Revised by AV, 10-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | ||
Theorem | fmptpr 7113* | Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) ⇒ ⊢ (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) | ||
Theorem | fvresi 7114 | The value of a restricted identity function. (Contributed by NM, 19-May-2004.) |
⊢ (𝐵 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵) | ||
Theorem | fninfp 7115* | Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) | ||
Theorem | fnelfp 7116 | Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑋) = 𝑋)) | ||
Theorem | fndifnfp 7117* | Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | ||
Theorem | fnelnfp 7118 | Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) | ||
Theorem | fnnfpeq0 7119 | A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) | ||
Theorem | fvunsn 7120 | Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴‘𝐷)) | ||
Theorem | fvsng 7121 | The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵) | ||
Theorem | fvsn 7122 | The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵 | ||
Theorem | fvsnun1 7123 | The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7124. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) | ||
Theorem | fvsnun2 7124 | The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 7123. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) & ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) ⇒ ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) | ||
Theorem | fnsnsplit 7125 | Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹‘𝑋)⟩})) | ||
Theorem | fsnunf 7126 | Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇) | ||
Theorem | fsnunf2 7127 | Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆⟶𝑇) | ||
Theorem | fsnunfv 7128 | Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌) | ||
Theorem | fsnunres 7129 | Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹) | ||
Theorem | funresdfunsn 7130 | Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹‘𝑋)⟩}) = 𝐹) | ||
Theorem | fvpr1g 7131 | The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) | ||
Theorem | fvpr2g 7132 | The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by BJ, 26-Sep-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷) | ||
Theorem | fvpr2gOLD 7133 | Obsolete version of fvpr2g 7132 as of 26-Sep-2024. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷) | ||
Theorem | fvpr1 7134 | The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) | ||
Theorem | fvpr1OLD 7135 | Obsolete version of fvpr1 7134 as of 26-Sep-2024. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶) | ||
Theorem | fvpr2 7136 | The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷) | ||
Theorem | fvpr2OLD 7137 | Obsolete version of fvpr2 7136 as of 26-Sep-2024. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷) | ||
Theorem | fprb 7138* | A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑅 𝐹 = {⟨𝐴, 𝑥⟩, ⟨𝐵, 𝑦⟩})) | ||
Theorem | fvtp1 7139 | The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷) | ||
Theorem | fvtp2 7140 | The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐸 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸) | ||
Theorem | fvtp3 7141 | The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐶 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹) | ||
Theorem | fvtp1g 7142 | The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷) | ||
Theorem | fvtp2g 7143 | The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸) | ||
Theorem | fvtp3g 7144 | The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹) | ||
Theorem | tpres 7145 | An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020.) |
⊢ (𝜑 → 𝑇 = {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) & ⊢ (𝜑 → 𝐶 ≠ 𝐴) ⇒ ⊢ (𝜑 → (𝑇 ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}) | ||
Theorem | fvconst2g 7146 | The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | ||
Theorem | fconst2g 7147 | A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.) |
⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | ||
Theorem | fvconst2 7148 | The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | ||
Theorem | fconst2 7149 | A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})) | ||
Theorem | fconst5 7150 | Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵})) | ||
Theorem | rnmptc 7151* | Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 = {𝐵}) | ||
Theorem | rnmptcOLD 7152* | Obsolete version of rnmptc 7151 as of 17-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 = {𝐵}) | ||
Theorem | fnprb 7153 | A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by FL, 26-Jun-2011.) (Proof shortened by Scott Fenton, 12-Oct-2017.) Eliminate unnecessary antecedent 𝐴 ≠ 𝐵. (Revised by NM, 29-Dec-2018.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩}) | ||
Theorem | fntpb 7154 | A function whose domain has at most three elements can be represented as a set of at most three ordered pairs. (Contributed by AV, 26-Jan-2021.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴, 𝐵, 𝐶} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩, ⟨𝐶, (𝐹‘𝐶)⟩}) | ||
Theorem | fnpr2g 7155 | A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩})) | ||
Theorem | fpr2g 7156 | A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹:{𝐴, 𝐵}⟶𝐶 ↔ ((𝐹‘𝐴) ∈ 𝐶 ∧ (𝐹‘𝐵) ∈ 𝐶 ∧ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩}))) | ||
Theorem | fconstfv 7157* | A constant function expressed in terms of its functionality, domain, and value. See also fconst2 7149. (Contributed by NM, 27-Aug-2004.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | ||
Theorem | fconst3 7158 | Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.) |
⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | ||
Theorem | fconst4 7159 | Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.) |
⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (◡𝐹 “ {𝐵}) = 𝐴)) | ||
Theorem | resfunexg 7160 | The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resiexd 7161 | The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) | ||
Theorem | fnex 7162 | If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 7160. See fnexALT 7874 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) | ||
Theorem | fnexd 7163 | If the domain of a function is a set, the function is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
Theorem | funex 7164 | If the domain of a function exists, so does the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 7162. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.) |
⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → 𝐹 ∈ V) | ||
Theorem | opabex 7165* | Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
Theorem | mptexg 7166* | If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | ||
Theorem | mptexgf 7167 | If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | ||
Theorem | mptex 7168* | If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg 7166. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
Theorem | mptexd 7169* | If the domain of a function given by maps-to notation is a set, the function is a set. Deduction version of mptexg 7166. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | ||
Theorem | mptrabex 7170* | If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↦ 𝐵) ∈ V | ||
Theorem | fex 7171 | If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | ||
Theorem | fexd 7172 | If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
Theorem | mptfvmpt 7173* | A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.) |
⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) & ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) & ⊢ 𝑉 = (𝐹‘𝑋) ⇒ ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) | ||
Theorem | eufnfv 7174* | A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∃!𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 𝐵) | ||
Theorem | funfvima 7175 | A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.) |
⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | ||
Theorem | funfvima2 7176 | A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | ||
Theorem | funfvima2d 7177 | A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) | ||
Theorem | fnfvima 7178 | The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) | ||
Theorem | fnfvimad 7179 | A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐶)) | ||
Theorem | resfvresima 7180 | The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝑆 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐻 ↾ (𝐹 “ 𝑆))‘((𝐹 ↾ 𝑆)‘𝑋)) = (𝐻‘(𝐹‘𝑋))) | ||
Theorem | funfvima3 7181 | A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ 𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ (𝐺 “ {𝐴}))) | ||
Theorem | rexima 7182* | Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | ralima 7183* | Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) | ||
Theorem | fvclss 7184* | Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.) |
⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) | ||
Theorem | elabrex 7185* | Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | ||
Theorem | abrexco 7186* | Composition of two image maps 𝐶(𝑦) and 𝐵(𝑤). (Contributed by NM, 27-May-2013.) |
⊢ 𝐵 ∈ V & ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ {𝑥 ∣ ∃𝑦 ∈ {𝑧 ∣ ∃𝑤 ∈ 𝐴 𝑧 = 𝐵}𝑥 = 𝐶} = {𝑥 ∣ ∃𝑤 ∈ 𝐴 𝑥 = 𝐷} | ||
Theorem | imaiun 7187* | The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) | ||
Theorem | imauni 7188* | The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐴 “ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝑥) | ||
Theorem | fniunfv 7189* | The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) | ||
Theorem | funiunfv 7190* |
The indexed union of a function's values is the union of its image under
the index class.
Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to 𝐹 Fn 𝐴, the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) | ||
Theorem | funiunfvf 7191* | The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 7190 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ (𝐹 “ 𝐴)) | ||
Theorem | eluniima 7192* | Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.) |
⊢ (Fun 𝐹 → (𝐵 ∈ ∪ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (𝐹‘𝑥))) | ||
Theorem | elunirn 7193* | Membership in the union of the range of a function. See elunirnALT 7194 for a shorter proof which uses ax-pow 5319. See elfvunirn 6870 for a more general version of the reverse direction. (Contributed by NM, 24-Sep-2006.) |
⊢ (Fun 𝐹 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) | ||
Theorem | elunirnALT 7194* | Alternate proof of elunirn 7193. It is shorter but requires ax-pow 5319 (through eluniima 7192, funiunfv 7190, ndmfv 6873). (Contributed by NM, 24-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fun 𝐹 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) | ||
Theorem | elunirn2OLD 7195 | Obsolete version of elfvunirn 6870 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (𝐹‘𝐴)) → 𝐵 ∈ ∪ ran 𝐹) | ||
Theorem | fnunirn 7196* | Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) | ||
Theorem | dff13 7197* | A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.) |
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | ||
Theorem | dff13f 7198* | A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐹 ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | ||
Theorem | f1veqaeq 7199 | If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | ||
Theorem | f1cofveqaeq 7200 | If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.) |
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |