| Metamath
Proof Explorer Theorem List (p. 72 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fmpti 7101* | Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) ⇒ ⊢ 𝐹:𝐴⟶𝐵 | ||
| Theorem | fvmptelcdm 7102* | The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | ||
| Theorem | fmptd 7103* | Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
| Theorem | fmpttd 7104* | Version of fmptd 7103 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | ||
| Theorem | fmpt3d 7105* | Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
| Theorem | fmptdf 7106* | A version of fmptd 7103 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
| Theorem | fompt 7107* | Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐹:𝐴–onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) | ||
| Theorem | ffnfv 7108* | A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
| Theorem | ffnfvf 7109 | A function maps to a class to which all values belong. This version of ffnfv 7108 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
| Theorem | fnfvrnss 7110* | An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | ||
| Theorem | fcdmssb 7111* | A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.) |
| ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) | ||
| Theorem | rnmptss 7112* | The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) | ||
| Theorem | fmpt2d 7113* | Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
| Theorem | ffvresb 7114* | A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| ⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) | ||
| Theorem | fssrescdmd 7115 | Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) | ||
| Theorem | f1oresrab 7116* | Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | f1ossf1o 7117* | Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022.) |
| ⊢ 𝑋 = {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} & ⊢ 𝑌 = {𝑤 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑌 ↦ 𝐵) & ⊢ (𝜑 → 𝐺:𝑌–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵) → (𝜏 ↔ [𝑥 / 𝑤]𝜒)) ⇒ ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏}) | ||
| Theorem | fmptco 7118* | Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation (𝑥 + 2) and 𝐺 the equation (3∗𝑧) then (𝐺 ∘ 𝐹) has the equation (3∗(𝑥 + 2)). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | ||
| Theorem | fmptcof 7119* | Version of fmptco 7118 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | ||
| Theorem | fmptcos 7120* | Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) | ||
| Theorem | cofmpt 7121* | Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) | ||
| Theorem | fcompt 7122* | Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) | ||
| Theorem | fcoconst 7123 | Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) | ||
| Theorem | fsn 7124 | A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}) | ||
| Theorem | fsn2 7125 | A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) | ||
| Theorem | fsng 7126 | A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) | ||
| Theorem | fsn2g 7127 | A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) | ||
| Theorem | xpsng 7128 | The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | ||
| Theorem | xpprsng 7129 | The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) | ||
| Theorem | xpsn 7130 | The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} | ||
| Theorem | f1o2sn 7131 | A singleton consisting in a nested ordered pair is a one-to-one function from the cartesian product of two singletons onto a singleton (case where the two singletons are equal). (Contributed by AV, 15-Aug-2019.) |
| ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋}) | ||
| Theorem | residpr 7132 | Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) | ||
| Theorem | dfmpt 7133 | Alternate definition for the maps-to notation df-mpt 5202 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} | ||
| Theorem | fnasrn 7134 | A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) | ||
| Theorem | idref 7135* | Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
| ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
| Theorem | funiun 7136* | A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.) |
| ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) | ||
| Theorem | funopsn 7137* | If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Proof shortened by AV, 15-Jul-2021.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6586, as relsnopg 5782 is to relop 5830. (New usage is discouraged.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑋, 𝑌〉) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉})) | ||
| Theorem | funop 7138* | An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6586, as relsnopg 5782 is to relop 5830. (New usage is discouraged.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V ⇒ ⊢ (Fun 〈𝑋, 𝑌〉 ↔ ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) | ||
| Theorem | funopdmsn 7139 | The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.) |
| ⊢ 𝐺 = 〈𝑋, 𝑌〉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑊 ⇒ ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵) | ||
| Theorem | funsndifnop 7140 | A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐴, 𝐵〉} ⇒ ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐺 ∈ (V × V)) | ||
| Theorem | funsneqopb 7141 | A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐴, 𝐵〉} ⇒ ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) | ||
| Theorem | ressnop0 7142 | If 𝐴 is not in 𝐶, then the restriction of a singleton of 〈𝐴, 𝐵〉 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.) |
| ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) | ||
| Theorem | fpr 7143 | A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | ||
| Theorem | fprg 7144 | A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.) |
| ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | ||
| Theorem | ftpg 7145 | A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| ⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶}) | ||
| Theorem | ftp 7146 | A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V & ⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 & ⊢ 𝐵 ≠ 𝐶 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} | ||
| Theorem | fnressn 7147 | A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) | ||
| Theorem | funressn 7148 | A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) | ||
| Theorem | fressnfv 7149 | The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹‘𝐵) ∈ 𝐶)) | ||
| Theorem | fvrnressn 7150 | If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| ⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) | ||
| Theorem | fvressn 7151 | The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| ⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) | ||
| Theorem | fvn0fvelrnOLD 7152 | Obsolete version of fvn0fvelrn 6906 as of 13-Jan-2025. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) | ||
| Theorem | fvconst 7153 | The value of a constant function. (Contributed by NM, 30-May-1999.) |
| ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) = 𝐵) | ||
| Theorem | fnsnr 7154 | If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
| ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) | ||
| Theorem | fnsnbg 7155 | A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) | ||
| Theorem | fnsnb 7156 | A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) (Proof shortened by Zhi Wang, 21-Oct-2025.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) | ||
| Theorem | fnsnbOLD 7157 | Obsolete version of fnsnb 7156 as of 21-Oct-2025. A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) | ||
| Theorem | fmptsn 7158* | Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | ||
| Theorem | fmptsng 7159* | Express a singleton function in maps-to notation. Version of fmptsn 7158 allowing the value 𝐵 to depend on the variable 𝑥. (Contributed by AV, 27-Feb-2019.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → {〈𝐴, 𝐶〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | ||
| Theorem | fmptsnd 7160* | Express a singleton function in maps-to notation. Deduction form of fmptsng 7159. (Contributed by AV, 4-Aug-2019.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝐴, 𝐶〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | ||
| Theorem | fmptap 7161* | Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑅 ∪ {𝐴}) = 𝑆 & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) | ||
| Theorem | fmptapd 7162* | Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) (Revised by AV, 10-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶)) | ||
| Theorem | fmptpr 7163* | Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) ⇒ ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) | ||
| Theorem | fvresi 7164 | The value of a restricted identity function. (Contributed by NM, 19-May-2004.) |
| ⊢ (𝐵 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵) | ||
| Theorem | fninfp 7165* | Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) | ||
| Theorem | fnelfp 7166 | Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑋) = 𝑋)) | ||
| Theorem | fndifnfp 7167* | Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | ||
| Theorem | fnelnfp 7168 | Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑋) ≠ 𝑋)) | ||
| Theorem | fnnfpeq0 7169 | A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ∖ I ) = ∅ ↔ 𝐹 = ( I ↾ 𝐴))) | ||
| Theorem | fvunsn 7170 | Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
| ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) | ||
| Theorem | fvsng 7171 | The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) | ||
| Theorem | fvsn 7172 | The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) (Proof shortened by BJ, 25-Feb-2023.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 | ||
| Theorem | fvsnun1 7173 | The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7174. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) | ||
| Theorem | fvsnun2 7174 | The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 7173. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) & ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) ⇒ ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) | ||
| Theorem | fnsnsplit 7175 | Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) | ||
| Theorem | fsnunf 7176 | Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) | ||
| Theorem | fsnunf2 7177 | Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇) | ||
| Theorem | fsnunfv 7178 | Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) | ||
| Theorem | fsnunres 7179 | Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) | ||
| Theorem | funresdfunsn 7180 | Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.) |
| ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) | ||
| Theorem | fvpr1g 7181 | The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | ||
| Theorem | fvpr2g 7182 | The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by BJ, 26-Sep-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | ||
| Theorem | fvpr1 7183 | The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | ||
| Theorem | fvpr2 7184 | The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | ||
| Theorem | fprb 7185* | A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑅 𝐹 = {〈𝐴, 𝑥〉, 〈𝐵, 𝑦〉})) | ||
| Theorem | fvtp1 7186 | The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) | ||
| Theorem | fvtp2 7187 | The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐸 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) | ||
| Theorem | fvtp3 7188 | The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) | ||
| Theorem | fvtp1g 7189 | The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) | ||
| Theorem | fvtp2g 7190 | The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) | ||
| Theorem | fvtp3g 7191 | The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| ⊢ (((𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) | ||
| Theorem | tpres 7192 | An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020.) |
| ⊢ (𝜑 → 𝑇 = {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) & ⊢ (𝜑 → 𝐶 ≠ 𝐴) ⇒ ⊢ (𝜑 → (𝑇 ↾ (V ∖ {𝐴})) = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) | ||
| Theorem | fvconst2g 7193 | The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | ||
| Theorem | fconst2g 7194 | A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | ||
| Theorem | fvconst2 7195 | The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | ||
| Theorem | fconst2 7196 | A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})) | ||
| Theorem | fconst5 7197 | Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵})) | ||
| Theorem | rnmptc 7198* | Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) Remove extra hypothesis. (Revised by SN, 17-Apr-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 = {𝐵}) | ||
| Theorem | fnprb 7199 | A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by FL, 26-Jun-2011.) (Proof shortened by Scott Fenton, 12-Oct-2017.) Eliminate unnecessary antecedent 𝐴 ≠ 𝐵. (Revised by NM, 29-Dec-2018.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) | ||
| Theorem | fntpb 7200 | A function whose domain has at most three elements can be represented as a set of at most three ordered pairs. (Contributed by AV, 26-Jan-2021.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴, 𝐵, 𝐶} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉, 〈𝐶, (𝐹‘𝐶)〉}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |