HomeHome Metamath Proof Explorer
Theorem List (p. 72 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28687)
  Hilbert Space Explorer  Hilbert Space Explorer
(28688-30210)
  Users' Mathboxes  Users' Mathboxes
(30211-44891)
 

Theorem List for Metamath Proof Explorer - 7101-7200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremweisoeq2 7101 Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7667. (Contributed by Mario Carneiro, 25-Jun-2015.)
(((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
 
Theoremknatar 7102* The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice 𝒫 𝐴. (Contributed by Mario Carneiro, 11-Jun-2015.)
𝑋 = {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹𝑧) ⊆ 𝑧}       ((𝐴𝑉 ∧ (𝐹𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝑥(𝐹𝑦) ⊆ (𝐹𝑥)) → (𝑋𝐴 ∧ (𝐹𝑋) = 𝑋))
 
2.3.16  Cantor's Theorem
 
Theoremcanth 7103 No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e. no function can map 𝐴 it onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8662. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7104 for a counterexample. (Use nex 1794 if you want the form ¬ ∃𝑓𝑓:𝐴onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
𝐴 ∈ V        ¬ 𝐹:𝐴onto→𝒫 𝐴
 
Theoremncanth 7104 Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 5210). Specifically, the identity function maps the universe onto its power class. Compare canth 7103 that works for sets.

This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3769): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4827). See also the remark in ru 3769 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.)

I :V–onto→𝒫 V
 
2.3.17  Restricted iota (description binder)
 
Syntaxcrio 7105 Extend class notation with restricted description binder.
class (𝑥𝐴 𝜑)
 
Definitiondf-riota 7106 Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6307. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
 
Theoremriotaeqdv 7107* Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
 
Theoremriotabidv 7108* Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
 
Theoremriotaeqbidv 7109* Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
 
Theoremriotaex 7110 Restricted iota is a set. (Contributed by NM, 15-Sep-2011.)
(𝑥𝐴 𝜓) ∈ V
 
Theoremriotav 7111 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
(𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
 
Theoremriotauni 7112 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
 
Theoremnfriota1 7113* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥(𝑥𝐴 𝜑)
 
Theoremnfriotadw 7114* Version of nfriotad 7117 with a disjoint variable condition, which does not require ax-13 2383. (Contributed by Gino Giotto, 26-Jan-2024.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝑦𝐴 𝜓))
 
Theoremcbvriotaw 7115* Version of cbvriota 7119 with a disjoint variable condition, which does not require ax-13 2383. (Contributed by Gino Giotto, 26-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremcbvriotavw 7116* Version of cbvriotav 7120 with a disjoint variable condition, which does not require ax-13 2383. (Contributed by Gino Giotto, 26-Jan-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremnfriotad 7117 Deduction version of nfriota 7118. Usage of this theorem is discouraged because it depends on ax-13 2383. Use the weaker nfriotadw 7114 when possible. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝑦𝐴 𝜓))
 
Theoremnfriota 7118* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
𝑥𝜑    &   𝑥𝐴       𝑥(𝑦𝐴 𝜑)
 
Theoremcbvriota 7119* Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2383. Use the weaker cbvriotaw 7115 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremcbvriotav 7120* Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2383. Use the weaker cbvriotavw 7116 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremcsbriota 7121* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.)
𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremriotacl2 7122 Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
 
Theoremriotacl 7123* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
 
Theoremriotasbc 7124 Substitution law for descriptions. Compare iotasbc 40736. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
(∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
 
Theoremriotabidva 7125* Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 3477 analog.) (Contributed by NM, 17-Jan-2012.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
 
Theoremriotabiia 7126 Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3471 analog.) (Contributed by NM, 16-Jan-2012.)
(𝑥𝐴 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
 
Theoremriota1 7127* Property of restricted iota. Compare iota1 6325. (Contributed by Mario Carneiro, 15-Oct-2016.)
(∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
 
Theoremriota1a 7128 Property of iota. (Contributed by NM, 23-Aug-2011.)
((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
 
Theoremriota2df 7129* A deduction version of riota2f 7130. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝜑    &   (𝜑𝑥𝐵)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑𝐵𝐴)    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜒))       ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
 
Theoremriota2f 7130* This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐵    &   𝑥𝜓    &   (𝑥 = 𝐵 → (𝜑𝜓))       ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
 
Theoremriota2 7131* This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)
(𝑥 = 𝐵 → (𝜑𝜓))       ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
 
Theoremriotaeqimp 7132* If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.)
𝐼 = (𝑎𝑉 𝑋 = 𝐴)    &   𝐽 = (𝑎𝑉 𝑌 = 𝐴)    &   (𝜑 → ∃!𝑎𝑉 𝑋 = 𝐴)    &   (𝜑 → ∃!𝑎𝑉 𝑌 = 𝐴)       ((𝜑𝐼 = 𝐽) → 𝑋 = 𝑌)
 
Theoremriotaprop 7133* Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013.)
𝑥𝜓    &   𝐵 = (𝑥𝐴 𝜑)    &   (𝑥 = 𝐵 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
 
Theoremriota5f 7134* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝑥𝐵)    &   (𝜑𝐵𝐴)    &   ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))       (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
 
Theoremriota5 7135* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
(𝜑𝐵𝐴)    &   ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))       (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
 
Theoremriotass2 7136* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
(((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓))
 
Theoremriotass 7137* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
 
Theoremmoriotass 7138* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
 
Theoremsnriota 7139 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
(∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})
 
Theoremriotaxfrd 7140* Change the variable 𝑥 in the expression for "the unique 𝑥 such that 𝜓 " to another variable 𝑦 contained in expression 𝐵. Use reuhypd 5310 to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝐶    &   ((𝜑𝑦𝐴) → 𝐵𝐴)    &   ((𝜑 ∧ (𝑦𝐴 𝜒) ∈ 𝐴) → 𝐶𝐴)    &   (𝑥 = 𝐵 → (𝜓𝜒))    &   (𝑦 = (𝑦𝐴 𝜒) → 𝐵 = 𝐶)    &   ((𝜑𝑥𝐴) → ∃!𝑦𝐴 𝑥 = 𝐵)       ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝑥𝐴 𝜓) = 𝐶)
 
Theoremeusvobj2 7141* Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
𝐵 ∈ V       (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
 
Theoremeusvobj1 7142* Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
𝐵 ∈ V       (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
 
Theoremf1ofveu 7143* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
 
Theoremf1ocnvfv3 7144* Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝑥𝐴 (𝐹𝑥) = 𝐶))
 
Theoremriotaund 7145* Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
(¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
 
Theoremriotassuni 7146* The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴)
 
Theoremriotaclb 7147* Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) (Revised by NM, 13-Sep-2018.)
(¬ ∅ ∈ 𝐴 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
 
2.3.18  Operations
 
Syntaxco 7148 Extend class notation to include the value of an operation 𝐹 (such as +) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 10863.)
class (𝐴𝐹𝐵)
 
Syntaxcoprab 7149 Extend class notation to include class abstraction (class builder) of nested ordered pairs.
class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Syntaxcmpo 7150 Extend the definition of a class to include maps-to notation for defining an operation via a rule.
class (𝑥𝐴, 𝑦𝐵𝐶)
 
Definitiondf-ov 7151 Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2, the expression (3 + 2) can be proved to equal 5 (see 3p2e5 11780). This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 7187 and ovprc2 7188. On the other hand, we often find uses for this definition when 𝐹 is a proper class, such as +o in oav 8128. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 7152. (Contributed by NM, 28-Feb-1995.)
(𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
 
Definitiondf-oprab 7152* Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7151 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 7302. (Contributed by NM, 12-Mar-1995.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
 
Definitiondf-mpo 7153* Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5138 for two arguments. (Contributed by NM, 17-Feb-2008.)
(𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
 
Theoremoveq 7154 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
(𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
 
Theoremoveq1 7155 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
(𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶))
 
Theoremoveq2 7156 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
(𝐴 = 𝐵 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵))
 
Theoremoveq12 7157 Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveq1i 7158 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
𝐴 = 𝐵       (𝐴𝐹𝐶) = (𝐵𝐹𝐶)
 
Theoremoveq2i 7159 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
𝐴 = 𝐵       (𝐶𝐹𝐴) = (𝐶𝐹𝐵)
 
Theoremoveq12i 7160 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐹𝐶) = (𝐵𝐹𝐷)
 
Theoremoveqi 7161 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
𝐴 = 𝐵       (𝐶𝐴𝐷) = (𝐶𝐵𝐷)
 
Theoremoveq123i 7162 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
𝐴 = 𝐶    &   𝐵 = 𝐷    &   𝐹 = 𝐺       (𝐴𝐹𝐵) = (𝐶𝐺𝐷)
 
Theoremoveq1d 7163 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶))
 
Theoremoveq2d 7164 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵))
 
Theoremoveqd 7165 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
 
Theoremoveq12d 7166 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveqan12d 7167 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveqan12rd 7168 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveq123d 7169 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))
 
Theoremfvoveq1d 7170 Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
 
Theoremfvoveq1 7171 Equality theorem for nested function and operation value. Closed form of fvoveq1d 7170. (Contributed by AV, 23-Jul-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
 
Theoremovanraleqv 7172* Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
(𝐵 = 𝑋 → (𝜑𝜓))       (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
 
Theoremimbrov2fvoveq 7173 Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
(𝑋 = 𝑌 → (𝜑𝜓))       (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
 
Theoremovrspc2v 7174* If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
(((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
 
Theoremoveqrspc2v 7175* Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))       ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
 
Theoremoveqdr 7176 Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.)
(𝜑𝐹 = 𝐺)       ((𝜑𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
 
Theoremnfovd 7177 Deduction version of bound-variable hypothesis builder nfov 7178. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐹)    &   (𝜑𝑥𝐵)       (𝜑𝑥(𝐴𝐹𝐵))
 
Theoremnfov 7178 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
𝑥𝐴    &   𝑥𝐹    &   𝑥𝐵       𝑥(𝐴𝐹𝐵)
 
Theoremoprabidw 7179* Version of oprabid 7180 with a disjoint variable condition, which does not require ax-13 2383. (Contributed by Gino Giotto, 26-Jan-2024.)
(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
 
Theoremoprabid 7180 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Usage of this theorem is discouraged because it depends on ax-13 2383. Use the weaker oprabidw 7179 when possible. (Contributed by Mario Carneiro, 20-Mar-2013.) (New usage is discouraged.)
(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
 
Theoremovex 7181 The result of an operation is a set. (Contributed by NM, 13-Mar-1995.)
(𝐴𝐹𝐵) ∈ V
 
Theoremovexi 7182 The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴 = (𝐵𝐹𝐶)       𝐴 ∈ V
 
Theoremovexd 7183 The result of an operation is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑 → (𝐴𝐹𝐵) ∈ V)
 
Theoremovssunirn 7184 The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
(𝑋𝐹𝑌) ⊆ ran 𝐹
 
Theorem0ov 7185 Operation value of the empty set. (Contributed by AV, 15-May-2021.)
(𝐴𝐵) = ∅
 
Theoremovprc 7186 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
 
Theoremovprc1 7187 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
Rel dom 𝐹       𝐴 ∈ V → (𝐴𝐹𝐵) = ∅)
 
Theoremovprc2 7188 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
 
Theoremovrcl 7189 Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.)
Rel dom 𝐹       (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theoremcsbov123 7190 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Revised by NM, 23-Aug-2018.)
𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
 
Theoremcsbov 7191* Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.)
𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
 
Theoremcsbov12g 7192* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
 
Theoremcsbov1g 7193* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
 
Theoremcsbov2g 7194* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
 
Theoremrspceov 7195* A frequently used special case of rspc2ev 3633 for operation values. (Contributed by NM, 21-Mar-2007.)
((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
 
Theoremelovimad 7196 Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑 → Fun 𝐹)    &   (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)       (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))
 
Theoremfnbrovb 7197 Value of a binary operation expressed as a binary relation. See also fnbrfvb 6711 for functions on Cartesian products. (Contributed by BJ, 15-Feb-2022.)
((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
 
Theoremfnotovb 7198 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6712. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 15-Feb-2022.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
 
Theoremopabbrex 7199 A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.)
((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)
 
Theoremopabresex2d 7200* Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.)
((𝜑𝑥(𝑊𝐺)𝑦) → 𝜓)    &   (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ 𝑉)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44891
  Copyright terms: Public domain < Previous  Next >