![]() |
Metamath
Proof Explorer Theorem List (p. 72 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sspreima 7101 | The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) | ||
Theorem | iinpreima 7102* | Preimage of an intersection. (Contributed by FL, 16-Apr-2012.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) | ||
Theorem | intpreima 7103* | Preimage of an intersection. (Contributed by FL, 28-Apr-2012.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩ 𝐴) = ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) | ||
Theorem | fimacnvOLD 7104 | Obsolete version of fimacnv 6769 as of 20-Sep-2024. (Contributed by FL, 25-Jan-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | ||
Theorem | fimacnvinrn 7105 | Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) | ||
Theorem | fimacnvinrn2 7106 | Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) | ||
Theorem | rescnvimafod 7107 | The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) & ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) | ||
Theorem | fvn0ssdmfun 7108* | If a class' function values for certain arguments is not the empty set, the arguments are contained in the domain of the class, and the class restricted to the arguments is a function, analogous to fvfundmfvn0 6963. (Contributed by AV, 27-Jan-2020.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (∀𝑎 ∈ 𝐷 (𝐹‘𝑎) ≠ ∅ → (𝐷 ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ 𝐷))) | ||
Theorem | fnopfv 7109 | Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 〈𝐵, (𝐹‘𝐵)〉 ∈ 𝐹) | ||
Theorem | fvelrn 7110 | A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | ||
Theorem | nelrnfvne 7111 | A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) | ||
Theorem | fveqdmss 7112* | If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the domain of the function is contained in the domain of the class. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐷 = dom 𝐵 ⇒ ⊢ ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → 𝐷 ⊆ dom 𝐴) | ||
Theorem | fveqressseq 7113* | If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐷 = dom 𝐵 ⇒ ⊢ ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (𝐴 ↾ 𝐷) = 𝐵) | ||
Theorem | fnfvelrn 7114 | A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹‘𝐵) ∈ ran 𝐹) | ||
Theorem | ffvelcdm 7115 | A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | fnfvelrnd 7116 | A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ∈ ran 𝐹) | ||
Theorem | ffvelcdmi 7117 | A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.) |
⊢ 𝐹:𝐴⟶𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | ffvelcdmda 7118 | A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | ffvelcdmd 7119 | A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐵) | ||
Theorem | feldmfvelcdm 7120 | A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) | ||
Theorem | rexrn 7121* | Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | ralrn 7122* | Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ ran 𝐹𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | elrnrexdm 7123* | For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) | ||
Theorem | elrnrexdmb 7124* | For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) | ||
Theorem | eldmrexrn 7125* | For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | ||
Theorem | eldmrexrnb 7126* | For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6581 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6581 of the value of a function, (𝐹‘𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | ||
Theorem | fvcofneq 7127* | The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) | ||
Theorem | ralrnmptw 7128* | A restricted quantifier over an image set. Version of ralrnmpt 7130 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexrnmptw 7129* | A restricted quantifier over an image set. Version of rexrnmpt 7131 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | ralrnmpt 7130* | A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker ralrnmptw 7128 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rexrnmpt 7131* | A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker rexrnmptw 7129 when possible. (Contributed by Mario Carneiro, 20-Aug-2015.) (New usage is discouraged.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | f0cli 7132 | Unconditional closure of a function when the codomain includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.) |
⊢ 𝐹:𝐴⟶𝐵 & ⊢ ∅ ∈ 𝐵 ⇒ ⊢ (𝐹‘𝐶) ∈ 𝐵 | ||
Theorem | dff2 7133 | Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) | ||
Theorem | dff3 7134* | Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | ||
Theorem | dff4 7135* | Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) | ||
Theorem | dffo3 7136* | An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | ||
Theorem | dffo4 7137* | Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) | ||
Theorem | dffo5 7138* | Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) | ||
Theorem | exfo 7139* | A relation equivalent to the existence of an onto mapping. The right-hand 𝑓 is not necessarily a function. (Contributed by NM, 20-Mar-2007.) |
⊢ (∃𝑓 𝑓:𝐴–onto→𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑦𝑓𝑥)) | ||
Theorem | dffo3f 7140* | An onto mapping expressed in terms of function values. As dffo3 7136 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | ||
Theorem | foelrn 7141* | Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) |
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) | ||
Theorem | foelrnf 7142* | Property of a surjective function. As foelrn 7141 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) | ||
Theorem | foco2 7143 | If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) | ||
Theorem | fmpt 7144* | Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) | ||
Theorem | f1ompt 7145* | Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐶)) | ||
Theorem | fmpti 7146* | Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) ⇒ ⊢ 𝐹:𝐴⟶𝐵 | ||
Theorem | fvmptelcdm 7147* | The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | ||
Theorem | fmptd 7148* | Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | fmpttd 7149* | Version of fmptd 7148 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | ||
Theorem | fmpt3d 7150* | Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | fmptdf 7151* | A version of fmptd 7148 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | fompt 7152* | Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐹:𝐴–onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) | ||
Theorem | ffnfv 7153* | A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
Theorem | ffnfvf 7154 | A function maps to a class to which all values belong. This version of ffnfv 7153 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
Theorem | fnfvrnss 7155* | An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | ||
Theorem | fcdmssb 7156* | A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.) |
⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) | ||
Theorem | rnmptss 7157* | The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | fmpt2d 7158* | Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | ffvresb 7159* | A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) | ||
Theorem | fssrescdmd 7160 | Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) | ||
Theorem | f1oresrab 7161* | Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | f1ossf1o 7162* | Restricting a bijection, which is a mapping from a restricted class abstraction, to a subset is a bijection. (Contributed by AV, 7-Aug-2022.) |
⊢ 𝑋 = {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} & ⊢ 𝑌 = {𝑤 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑌 ↦ 𝐵) & ⊢ (𝜑 → 𝐺:𝑌–1-1-onto→𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵) → (𝜏 ↔ [𝑥 / 𝑤]𝜒)) ⇒ ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏}) | ||
Theorem | fmptco 7163* | Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation (𝑥 + 2) and 𝐺 the equation (3∗𝑧) then (𝐺 ∘ 𝐹) has the equation (3∗(𝑥 + 2)). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | ||
Theorem | fmptcof 7164* | Version of fmptco 7163 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | ||
Theorem | fmptcos 7165* | Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) | ||
Theorem | cofmpt 7166* | Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
⊢ (𝜑 → 𝐹:𝐶⟶𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) | ||
Theorem | fcompt 7167* | Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) | ||
Theorem | fcoconst 7168 | Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
⊢ ((𝐹 Fn 𝑋 ∧ 𝑌 ∈ 𝑋) → (𝐹 ∘ (𝐼 × {𝑌})) = (𝐼 × {(𝐹‘𝑌)})) | ||
Theorem | fsn 7169 | A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}) | ||
Theorem | fsn2 7170 | A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) | ||
Theorem | fsng 7171 | A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) | ||
Theorem | fsn2g 7172 | A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) | ||
Theorem | xpsng 7173 | The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | ||
Theorem | xpprsng 7174 | The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) | ||
Theorem | xpsn 7175 | The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉} | ||
Theorem | f1o2sn 7176 | A singleton consisting in a nested ordered pair is a one-to-one function from the cartesian product of two singletons onto a singleton (case where the two singletons are equal). (Contributed by AV, 15-Aug-2019.) |
⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋}) | ||
Theorem | residpr 7177 | Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) | ||
Theorem | dfmpt 7178 | Alternate definition for the maps-to notation df-mpt 5250 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} | ||
Theorem | fnasrn 7179 | A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) | ||
Theorem | idref 7180* | Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
Theorem | funiun 7181* | A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.) |
⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) | ||
Theorem | funopsn 7182* | If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Proof shortened by AV, 15-Jul-2021.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6629, as relsnopg 5827 is to relop 5875. (New usage is discouraged.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑋, 𝑌〉) → ∃𝑎(𝑋 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉})) | ||
Theorem | funop 7183* | An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6629, as relsnopg 5827 is to relop 5875. (New usage is discouraged.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V ⇒ ⊢ (Fun 〈𝑋, 𝑌〉 ↔ ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) | ||
Theorem | funopdmsn 7184 | The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.) |
⊢ 𝐺 = 〈𝑋, 𝑌〉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑌 ∈ 𝑊 ⇒ ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵) | ||
Theorem | funsndifnop 7185 | A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐴, 𝐵〉} ⇒ ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐺 ∈ (V × V)) | ||
Theorem | funsneqopb 7186 | A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐺 = {〈𝐴, 𝐵〉} ⇒ ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) | ||
Theorem | ressnop0 7187 | If 𝐴 is not in 𝐶, then the restriction of a singleton of 〈𝐴, 𝐵〉 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.) |
⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) | ||
Theorem | fpr 7188 | A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | ||
Theorem | fprg 7189 | A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.) |
⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐹) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐻) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | ||
Theorem | ftpg 7190 | A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶}) | ||
Theorem | ftp 7191 | A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V & ⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐴 ≠ 𝐶 & ⊢ 𝐵 ≠ 𝐶 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} | ||
Theorem | fnressn 7192 | A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) | ||
Theorem | funressn 7193 | A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) | ||
Theorem | fressnfv 7194 | The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}):{𝐵}⟶𝐶 ↔ (𝐹‘𝐵) ∈ 𝐶)) | ||
Theorem | fvrnressn 7195 | If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
⊢ (𝑋 ∈ 𝑉 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) | ||
Theorem | fvressn 7196 | The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
⊢ (𝑋 ∈ 𝑉 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) | ||
Theorem | fvn0fvelrnOLD 7197 | Obsolete version of fvn0fvelrn 6951 as of 13-Jan-2025. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) | ||
Theorem | fvconst 7198 | The value of a constant function. (Contributed by NM, 30-May-1999.) |
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) = 𝐵) | ||
Theorem | fnsnr 7199 | If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) | ||
Theorem | fnsnb 7200 | A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |