![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvresd | Structured version Visualization version GIF version |
Description: The value of a restricted function, deduction version of fvres 6557. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fvresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
fvresd | ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | fvres 6557 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ↾ cres 5445 ‘cfv 6225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-xp 5449 df-res 5455 df-iota 6189 df-fv 6233 |
This theorem is referenced by: fvressn 6787 fvsnun1 6809 fvsnun2 6810 fsnunfv 6816 resfvresima 6862 ovres 7170 curry1 7655 curry2 7658 smores 7841 smores2 7843 tz7.44-2 7895 seqomlem1 7937 seqomlem4 7940 onasuc 8004 onmsuc 8005 onesuc 8006 ordtypelem4 8831 ordtypelem6 8833 ordtypelem7 8834 unxpwdom2 8898 cantnfres 8986 cantnfp1lem3 8989 dfac12lem1 9415 ackbij2lem2 9508 cfsmolem 9538 ttukeylem3 9779 fpwwe2lem6 9903 fpwwe2lem9 9906 canthp1lem2 9921 addpqnq 10206 mulpqnq 10209 seqf1olem2 13260 seqcoll 13670 rlimres 14749 lo1res 14750 isercolllem3 14857 ackbijnn 15016 bitsf1 15628 sadcaddlem 15639 sadaddlem 15648 sadasslem 15652 sadeq 15654 eucalgcvga 15759 eucalg 15760 funcres 16995 1stf1 17271 2ndf1 17274 1stfcl 17276 2ndfcl 17277 prf1st 17283 prf2nd 17284 1st2ndprf 17285 uncf2 17316 diag12 17323 diag2 17324 curf2ndf 17326 yonedalem22 17357 lubval 17423 glbval 17436 resmhm 17798 resghm 18115 efgsres 18591 efgredlemd 18597 efgredlem 18600 dprdres 18867 dmdprdsplit2lem 18884 abvres 19300 reslmhm 19514 psgndiflemB 20426 cnpresti 21580 cnprest 21581 upxp 21915 uptx 21917 txkgen 21944 remetdval 23080 lmcau 23599 dvreslem 24190 dvres2lem 24191 dvlip2 24275 c1liplem1 24276 dvgt0lem1 24282 lhop1lem 24293 dvcnvrelem1 24297 dvcvx 24300 psercn 24697 efcvx 24720 reefgim 24721 resinf1o 24801 efif1olem4 24810 eff1olem 24813 eflog 24841 logcn 24911 loglesqrt 25020 asinrebnd 25160 jensen 25248 amgmlem 25249 lgamgulmlem2 25289 dvdsmulf1o 25453 dchrabs 25518 sum2dchr 25532 uhgrspansubgrlem 26755 wlkres 27135 wlkresOLD 27137 redwlk 27139 ofresid 30079 fsuppcurry1 30149 fsuppcurry2 30150 tocyccntz 30423 dimkerim 30627 ftc2re 31486 reprsuc 31503 bnj1379 31719 subgrwlk 31987 satom 32211 frrlem4 32735 frrlem12 32743 nolesgn2o 32787 nolesgn2ores 32788 noresle 32809 noprefixmo 32811 nosupres 32816 nosupbnd2lem1 32824 noetalem3 32828 bj-fvsnun1 34095 fnwe2lem3 39137 wessf1ornlem 40985 limcperiod 41451 limclner 41474 limsupresxr 41589 liminfresxr 41590 cncfperiod 41703 sssmf 42557 rhmsubclem2 43836 rhmsubcALTVlem2 43854 |
Copyright terms: Public domain | W3C validator |