![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvunsn | Structured version Visualization version GIF version |
Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
fvunsn | ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundir 5661 | . . . 4 ⊢ ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) | |
2 | nelsn 4434 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) | |
3 | ressnop0 6686 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ {𝐷} → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) |
5 | 4 | uneq2d 3990 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
6 | un0 4193 | . . . . 5 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
7 | 5, 6 | syl6eq 2830 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
8 | 1, 7 | syl5eq 2826 | . . 3 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
9 | 8 | fveq1d 6448 | . 2 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
10 | fvressn 6695 | . . 3 ⊢ (𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) | |
11 | fvprc 6439 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ∅) | |
12 | fvprc 6439 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = ∅) | |
13 | 11, 12 | eqtr4d 2817 | . . 3 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) |
14 | 10, 13 | pm2.61i 177 | . 2 ⊢ (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) |
15 | fvressn 6695 | . . 3 ⊢ (𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
16 | fvprc 6439 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = ∅) | |
17 | fvprc 6439 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐴‘𝐷) = ∅) | |
18 | 16, 17 | eqtr4d 2817 | . . 3 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
19 | 15, 18 | pm2.61i 177 | . 2 ⊢ ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷) |
20 | 9, 14, 19 | 3eqtr3g 2837 | 1 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ∪ cun 3790 ∅c0 4141 {csn 4398 〈cop 4404 ↾ cres 5357 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-xp 5361 df-res 5367 df-iota 6099 df-fv 6143 |
This theorem is referenced by: fvpr1 6727 fvpr1g 6729 fvpr2g 6730 fvtp1 6732 fvtp1g 6735 ac6sfi 8492 cats1un 13841 ruclem6 15368 ruclem7 15369 wlkp1lem5 27028 wlkp1lem6 27029 fnchoice 40125 nnsum4primeseven 42717 nnsum4primesevenALTV 42718 |
Copyright terms: Public domain | W3C validator |