![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvunsn | Structured version Visualization version GIF version |
Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
fvunsn | ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundir 5997 | . . . 4 ⊢ ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) | |
2 | nelsn 4669 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) | |
3 | ressnop0 7154 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ {𝐷} → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅) |
5 | 4 | uneq2d 4164 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
6 | un0 4391 | . . . . 5 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
7 | 5, 6 | eqtrdi 2786 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
8 | 1, 7 | eqtrid 2782 | . . 3 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
9 | 8 | fveq1d 6894 | . 2 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
10 | fvressn 7163 | . . 3 ⊢ (𝐷 ∈ V → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷)) | |
11 | fvprc 6884 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ∅) | |
12 | fvprc 6884 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = ∅) | |
13 | 11, 12 | eqtr4d 2773 | . . 3 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷)) |
14 | 10, 13 | pm2.61i 182 | . 2 ⊢ (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) |
15 | fvressn 7163 | . . 3 ⊢ (𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
16 | fvprc 6884 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = ∅) | |
17 | fvprc 6884 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐴‘𝐷) = ∅) | |
18 | 16, 17 | eqtr4d 2773 | . . 3 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
19 | 15, 18 | pm2.61i 182 | . 2 ⊢ ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷) |
20 | 9, 14, 19 | 3eqtr3g 2793 | 1 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 Vcvv 3472 ∪ cun 3947 ∅c0 4323 {csn 4629 ⟨cop 4635 ↾ cres 5679 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-res 5689 df-iota 6496 df-fv 6552 |
This theorem is referenced by: fvpr1g 7191 fvpr2gOLD 7193 fvpr1OLD 7195 fvtp1 7199 fvtp1g 7202 ac6sfi 9291 cats1un 14677 ruclem6 16184 ruclem7 16185 wlkp1lem5 29199 wlkp1lem6 29200 fnchoice 44017 nnsum4primeseven 46768 nnsum4primesevenALTV 46769 |
Copyright terms: Public domain | W3C validator |