| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvunsn | Structured version Visualization version GIF version | ||
| Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| fvunsn | ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir 5965 | . . . 4 ⊢ ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) | |
| 2 | nelsn 4630 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) | |
| 3 | ressnop0 7125 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ {𝐷} → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) |
| 5 | 4 | uneq2d 4131 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
| 6 | un0 4357 | . . . . 5 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
| 7 | 5, 6 | eqtrdi 2780 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
| 8 | 1, 7 | eqtrid 2776 | . . 3 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
| 9 | 8 | fveq1d 6860 | . 2 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
| 10 | fvressn 7134 | . . 3 ⊢ (𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) | |
| 11 | fvprc 6850 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ∅) | |
| 12 | fvprc 6850 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = ∅) | |
| 13 | 11, 12 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) |
| 14 | 10, 13 | pm2.61i 182 | . 2 ⊢ (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) |
| 15 | fvressn 7134 | . . 3 ⊢ (𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
| 16 | fvprc 6850 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = ∅) | |
| 17 | fvprc 6850 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐴‘𝐷) = ∅) | |
| 18 | 16, 17 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
| 19 | 15, 18 | pm2.61i 182 | . 2 ⊢ ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷) |
| 20 | 9, 14, 19 | 3eqtr3g 2787 | 1 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∪ cun 3912 ∅c0 4296 {csn 4589 〈cop 4595 ↾ cres 5640 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: fvpr1g 7164 fvtp1 7169 fvtp1g 7172 f1ounsn 7247 ac6sfi 9231 cats1un 14686 ruclem6 16203 ruclem7 16204 wlkp1lem5 29605 wlkp1lem6 29606 fnchoice 45023 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 |
| Copyright terms: Public domain | W3C validator |