| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvunsn | Structured version Visualization version GIF version | ||
| Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| fvunsn | ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir 6012 | . . . 4 ⊢ ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) | |
| 2 | nelsn 4666 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) | |
| 3 | ressnop0 7173 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ {𝐷} → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) |
| 5 | 4 | uneq2d 4168 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
| 6 | un0 4394 | . . . . 5 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
| 7 | 5, 6 | eqtrdi 2793 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
| 8 | 1, 7 | eqtrid 2789 | . . 3 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
| 9 | 8 | fveq1d 6908 | . 2 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
| 10 | fvressn 7182 | . . 3 ⊢ (𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) | |
| 11 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ∅) | |
| 12 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = ∅) | |
| 13 | 11, 12 | eqtr4d 2780 | . . 3 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) |
| 14 | 10, 13 | pm2.61i 182 | . 2 ⊢ (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) |
| 15 | fvressn 7182 | . . 3 ⊢ (𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
| 16 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = ∅) | |
| 17 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐴‘𝐷) = ∅) | |
| 18 | 16, 17 | eqtr4d 2780 | . . 3 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
| 19 | 15, 18 | pm2.61i 182 | . 2 ⊢ ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷) |
| 20 | 9, 14, 19 | 3eqtr3g 2800 | 1 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∪ cun 3949 ∅c0 4333 {csn 4626 〈cop 4632 ↾ cres 5687 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-res 5697 df-iota 6514 df-fv 6569 |
| This theorem is referenced by: fvpr1g 7210 fvtp1 7215 fvtp1g 7218 f1ounsn 7292 ac6sfi 9320 cats1un 14759 ruclem6 16271 ruclem7 16272 wlkp1lem5 29695 wlkp1lem6 29696 fnchoice 45034 nnsum4primeseven 47787 nnsum4primesevenALTV 47788 |
| Copyright terms: Public domain | W3C validator |