MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvunsn Structured version   Visualization version   GIF version

Theorem fvunsn 7122
Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
fvunsn (𝐵𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))

Proof of Theorem fvunsn
StepHypRef Expression
1 resundir 5950 . . . 4 ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷}))
2 nelsn 4620 . . . . . . 7 (𝐵𝐷 → ¬ 𝐵 ∈ {𝐷})
3 ressnop0 7095 . . . . . . 7 𝐵 ∈ {𝐷} → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
42, 3syl 17 . . . . . 6 (𝐵𝐷 → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
54uneq2d 4117 . . . . 5 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅))
6 un0 4343 . . . . 5 ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷})
75, 6eqtrdi 2784 . . . 4 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = (𝐴 ↾ {𝐷}))
81, 7eqtrid 2780 . . 3 (𝐵𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = (𝐴 ↾ {𝐷}))
98fveq1d 6833 . 2 (𝐵𝐷 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷))
10 fvressn 7104 . . 3 (𝐷 ∈ V → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
11 fvprc 6823 . . . 4 𝐷 ∈ V → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ∅)
12 fvprc 6823 . . . 4 𝐷 ∈ V → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = ∅)
1311, 12eqtr4d 2771 . . 3 𝐷 ∈ V → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
1410, 13pm2.61i 182 . 2 (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷)
15 fvressn 7104 . . 3 (𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
16 fvprc 6823 . . . 4 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = ∅)
17 fvprc 6823 . . . 4 𝐷 ∈ V → (𝐴𝐷) = ∅)
1816, 17eqtr4d 2771 . . 3 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
1915, 18pm2.61i 182 . 2 ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷)
209, 14, 193eqtr3g 2791 1 (𝐵𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cun 3896  c0 4282  {csn 4577  cop 4583  cres 5623  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-res 5633  df-iota 6445  df-fv 6497
This theorem is referenced by:  fvpr1g  7133  fvtp1  7138  fvtp1g  7141  f1ounsn  7215  ac6sfi  9179  cats1un  14635  ruclem6  16151  ruclem7  16152  wlkp1lem5  29675  wlkp1lem6  29676  fnchoice  45190  nnsum4primeseven  47962  nnsum4primesevenALTV  47963
  Copyright terms: Public domain W3C validator