Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gru0eld Structured version   Visualization version   GIF version

Theorem gru0eld 44321
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
gru0eld.1 (𝜑𝐺 ∈ Univ)
gru0eld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
gru0eld (𝜑 → ∅ ∈ 𝐺)

Proof of Theorem gru0eld
StepHypRef Expression
1 gru0eld.1 . 2 (𝜑𝐺 ∈ Univ)
2 gru0eld.2 . 2 (𝜑𝐴𝐺)
3 0ss 4347 . . 3 ∅ ⊆ 𝐴
43a1i 11 . 2 (𝜑 → ∅ ⊆ 𝐴)
5 gruss 10687 . 2 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺)
61, 2, 4, 5syl3anc 1373 1 (𝜑 → ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3897  c0 4280  Univcgru 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-tr 5197  df-iota 6437  df-fv 6489  df-ov 7349  df-gru 10682
This theorem is referenced by:  grur1cld  44324  grucollcld  44352
  Copyright terms: Public domain W3C validator