![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gru0eld | Structured version Visualization version GIF version |
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
gru0eld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
gru0eld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
Ref | Expression |
---|---|
gru0eld | ⊢ (𝜑 → ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gru0eld.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
2 | gru0eld.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
3 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝐴) |
5 | gruss 10865 | . 2 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺) | |
6 | 1, 2, 4, 5 | syl3anc 1371 | 1 ⊢ (𝜑 → ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 Univcgru 10859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-tr 5284 df-iota 6525 df-fv 6581 df-ov 7451 df-gru 10860 |
This theorem is referenced by: grur1cld 44201 grucollcld 44229 |
Copyright terms: Public domain | W3C validator |