| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gru0eld | Structured version Visualization version GIF version | ||
| Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| gru0eld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
| gru0eld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
| Ref | Expression |
|---|---|
| gru0eld | ⊢ (𝜑 → ∅ ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gru0eld.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
| 2 | gru0eld.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
| 3 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝐴) |
| 5 | gruss 10687 | . 2 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺) | |
| 6 | 1, 2, 4, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → ∅ ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 Univcgru 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-tr 5197 df-iota 6437 df-fv 6489 df-ov 7349 df-gru 10682 |
| This theorem is referenced by: grur1cld 44324 grucollcld 44352 |
| Copyright terms: Public domain | W3C validator |