Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gru0eld Structured version   Visualization version   GIF version

Theorem gru0eld 41847
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
gru0eld.1 (𝜑𝐺 ∈ Univ)
gru0eld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
gru0eld (𝜑 → ∅ ∈ 𝐺)

Proof of Theorem gru0eld
StepHypRef Expression
1 gru0eld.1 . 2 (𝜑𝐺 ∈ Univ)
2 gru0eld.2 . 2 (𝜑𝐴𝐺)
3 0ss 4330 . . 3 ∅ ⊆ 𝐴
43a1i 11 . 2 (𝜑 → ∅ ⊆ 𝐴)
5 gruss 10552 . 2 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺)
61, 2, 4, 5syl3anc 1370 1 (𝜑 → ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  c0 4256  Univcgru 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-tr 5192  df-iota 6391  df-fv 6441  df-ov 7278  df-gru 10547
This theorem is referenced by:  grur1cld  41850  grucollcld  41878
  Copyright terms: Public domain W3C validator