Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gru0eld Structured version   Visualization version   GIF version

Theorem gru0eld 44225
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
gru0eld.1 (𝜑𝐺 ∈ Univ)
gru0eld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
gru0eld (𝜑 → ∅ ∈ 𝐺)

Proof of Theorem gru0eld
StepHypRef Expression
1 gru0eld.1 . 2 (𝜑𝐺 ∈ Univ)
2 gru0eld.2 . 2 (𝜑𝐴𝐺)
3 0ss 4366 . . 3 ∅ ⊆ 𝐴
43a1i 11 . 2 (𝜑 → ∅ ⊆ 𝐴)
5 gruss 10756 . 2 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺)
61, 2, 4, 5syl3anc 1373 1 (𝜑 → ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3917  c0 4299  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-tr 5218  df-iota 6467  df-fv 6522  df-ov 7393  df-gru 10751
This theorem is referenced by:  grur1cld  44228  grucollcld  44256
  Copyright terms: Public domain W3C validator