![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gru0eld | Structured version Visualization version GIF version |
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
gru0eld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
gru0eld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
Ref | Expression |
---|---|
gru0eld | ⊢ (𝜑 → ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gru0eld.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
2 | gru0eld.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
3 | 0ss 4360 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝐴) |
5 | gruss 10740 | . 2 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺) | |
6 | 1, 2, 4, 5 | syl3anc 1372 | 1 ⊢ (𝜑 → ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3914 ∅c0 4286 Univcgru 10734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-tr 5227 df-iota 6452 df-fv 6508 df-ov 7364 df-gru 10735 |
This theorem is referenced by: grur1cld 42604 grucollcld 42632 |
Copyright terms: Public domain | W3C validator |