Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gru0eld Structured version   Visualization version   GIF version

Theorem gru0eld 41736
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
gru0eld.1 (𝜑𝐺 ∈ Univ)
gru0eld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
gru0eld (𝜑 → ∅ ∈ 𝐺)

Proof of Theorem gru0eld
StepHypRef Expression
1 gru0eld.1 . 2 (𝜑𝐺 ∈ Univ)
2 gru0eld.2 . 2 (𝜑𝐴𝐺)
3 0ss 4327 . . 3 ∅ ⊆ 𝐴
43a1i 11 . 2 (𝜑 → ∅ ⊆ 𝐴)
5 gruss 10483 . 2 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺)
61, 2, 4, 5syl3anc 1369 1 (𝜑 → ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  c0 4253  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-tr 5188  df-iota 6376  df-fv 6426  df-ov 7258  df-gru 10478
This theorem is referenced by:  grur1cld  41739  grucollcld  41767
  Copyright terms: Public domain W3C validator