Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gru0eld Structured version   Visualization version   GIF version

Theorem gru0eld 44225
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
gru0eld.1 (𝜑𝐺 ∈ Univ)
gru0eld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
gru0eld (𝜑 → ∅ ∈ 𝐺)

Proof of Theorem gru0eld
StepHypRef Expression
1 gru0eld.1 . 2 (𝜑𝐺 ∈ Univ)
2 gru0eld.2 . 2 (𝜑𝐴𝐺)
3 0ss 4406 . . 3 ∅ ⊆ 𝐴
43a1i 11 . 2 (𝜑 → ∅ ⊆ 𝐴)
5 gruss 10834 . 2 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺)
61, 2, 4, 5syl3anc 1370 1 (𝜑 → ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3963  c0 4339  Univcgru 10828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-tr 5266  df-iota 6516  df-fv 6571  df-ov 7434  df-gru 10829
This theorem is referenced by:  grur1cld  44228  grucollcld  44256
  Copyright terms: Public domain W3C validator