Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gru0eld | Structured version Visualization version GIF version |
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
gru0eld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
gru0eld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
Ref | Expression |
---|---|
gru0eld | ⊢ (𝜑 → ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gru0eld.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
2 | gru0eld.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
3 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝐴) |
5 | gruss 10483 | . 2 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∅ ⊆ 𝐴) → ∅ ∈ 𝐺) | |
6 | 1, 2, 4, 5 | syl3anc 1369 | 1 ⊢ (𝜑 → ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 Univcgru 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-tr 5188 df-iota 6376 df-fv 6426 df-ov 7258 df-gru 10478 |
This theorem is referenced by: grur1cld 41739 grucollcld 41767 |
Copyright terms: Public domain | W3C validator |