Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grur1cld Structured version   Visualization version   GIF version

Theorem grur1cld 42976
Description: Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypotheses
Ref Expression
grur1cld.1 (𝜑𝐺 ∈ Univ)
grur1cld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
grur1cld (𝜑 → (𝑅1𝐴) ∈ 𝐺)

Proof of Theorem grur1cld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grur1cld.2 . . . 4 (𝜑𝐴𝐺)
21adantr 481 . . 3 ((𝜑𝐴 ∈ On) → 𝐴𝐺)
3 eleq1 2821 . . . . 5 (𝑥 = ∅ → (𝑥𝐺 ↔ ∅ ∈ 𝐺))
4 fveq2 6888 . . . . . 6 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
54eleq1d 2818 . . . . 5 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1‘∅) ∈ 𝐺))
63, 5imbi12d 344 . . . 4 (𝑥 = ∅ → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (∅ ∈ 𝐺 → (𝑅1‘∅) ∈ 𝐺)))
7 eleq1 2821 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐺𝑦𝐺))
8 fveq2 6888 . . . . . 6 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
98eleq1d 2818 . . . . 5 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1𝑦) ∈ 𝐺))
107, 9imbi12d 344 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)))
11 eleq1 2821 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝐺 ↔ suc 𝑦𝐺))
12 fveq2 6888 . . . . . 6 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1312eleq1d 2818 . . . . 5 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1‘suc 𝑦) ∈ 𝐺))
1411, 13imbi12d 344 . . . 4 (𝑥 = suc 𝑦 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (suc 𝑦𝐺 → (𝑅1‘suc 𝑦) ∈ 𝐺)))
15 eleq1 2821 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝐴𝐺))
16 fveq2 6888 . . . . . 6 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
1716eleq1d 2818 . . . . 5 (𝑥 = 𝐴 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1𝐴) ∈ 𝐺))
1815, 17imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (𝐴𝐺 → (𝑅1𝐴) ∈ 𝐺)))
19 r10 9759 . . . . . . 7 (𝑅1‘∅) = ∅
20 grur1cld.1 . . . . . . . 8 (𝜑𝐺 ∈ Univ)
2120, 1gru0eld 42973 . . . . . . 7 (𝜑 → ∅ ∈ 𝐺)
2219, 21eqeltrid 2837 . . . . . 6 (𝜑 → (𝑅1‘∅) ∈ 𝐺)
2322adantr 481 . . . . 5 ((𝜑𝐴 ∈ On) → (𝑅1‘∅) ∈ 𝐺)
2423a1d 25 . . . 4 ((𝜑𝐴 ∈ On) → (∅ ∈ 𝐺 → (𝑅1‘∅) ∈ 𝐺))
25 simpl1 1191 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝜑𝐴 ∈ On))
26 simpl2 1192 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦 ∈ On)
2720adantr 481 . . . . . . . . 9 ((𝜑𝐴 ∈ On) → 𝐺 ∈ Univ)
2825, 27syl 17 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝐺 ∈ Univ)
29 simpr 485 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → suc 𝑦𝐺)
30 sssucid 6441 . . . . . . . . 9 𝑦 ⊆ suc 𝑦
3130a1i 11 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦 ⊆ suc 𝑦)
32 gruss 10787 . . . . . . . 8 ((𝐺 ∈ Univ ∧ suc 𝑦𝐺𝑦 ⊆ suc 𝑦) → 𝑦𝐺)
3328, 29, 31, 32syl3anc 1371 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦𝐺)
34 simpl3 1193 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺))
3533, 34mpd 15 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑅1𝑦) ∈ 𝐺)
36 r1suc 9761 . . . . . . . 8 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37363ad2ant2 1134 . . . . . . 7 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
38273ad2ant1 1133 . . . . . . . 8 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → 𝐺 ∈ Univ)
39 simp3 1138 . . . . . . . 8 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1𝑦) ∈ 𝐺)
40 grupw 10786 . . . . . . . 8 ((𝐺 ∈ Univ ∧ (𝑅1𝑦) ∈ 𝐺) → 𝒫 (𝑅1𝑦) ∈ 𝐺)
4138, 39, 40syl2anc 584 . . . . . . 7 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → 𝒫 (𝑅1𝑦) ∈ 𝐺)
4237, 41eqeltrd 2833 . . . . . 6 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1‘suc 𝑦) ∈ 𝐺)
4325, 26, 35, 42syl3anc 1371 . . . . 5 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑅1‘suc 𝑦) ∈ 𝐺)
4443ex 413 . . . 4 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) → (suc 𝑦𝐺 → (𝑅1‘suc 𝑦) ∈ 𝐺))
45 simpr 485 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝑥𝐺)
46 simpl2 1192 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → Lim 𝑥)
47 r1lim 9763 . . . . . . 7 ((𝑥𝐺 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4845, 46, 47syl2anc 584 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
49 simpl1 1191 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝜑𝐴 ∈ On))
5049, 27syl 17 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝐺 ∈ Univ)
51 simpl3 1193 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺))
52 simpl1l 1224 . . . . . . . . 9 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝜑)
53 simpl1 1191 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝜑)
5453, 20syl 17 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝐺 ∈ Univ)
55 simpl3 1193 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑥𝐺)
56 simpl2 1192 . . . . . . . . . . . . 13 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → Lim 𝑥)
57 limord 6421 . . . . . . . . . . . . 13 (Lim 𝑥 → Ord 𝑥)
5856, 57syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → Ord 𝑥)
59 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝑥)
60 ordelss 6377 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦𝑥)
6158, 59, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝑥)
62 gruss 10787 . . . . . . . . . . 11 ((𝐺 ∈ Univ ∧ 𝑥𝐺𝑦𝑥) → 𝑦𝐺)
6354, 55, 61, 62syl3anc 1371 . . . . . . . . . 10 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝐺)
6463ralrimiva 3146 . . . . . . . . 9 ((𝜑 ∧ Lim 𝑥𝑥𝐺) → ∀𝑦𝑥 𝑦𝐺)
6552, 46, 45, 64syl3anc 1371 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 𝑦𝐺)
66 ralim 3086 . . . . . . . 8 (∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺) → (∀𝑦𝑥 𝑦𝐺 → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺))
6751, 65, 66sylc 65 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
68 gruiun 10790 . . . . . . 7 ((𝐺 ∈ Univ ∧ 𝑥𝐺 ∧ ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
6950, 45, 67, 68syl3anc 1371 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
7048, 69eqeltrd 2833 . . . . 5 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝑅1𝑥) ∈ 𝐺)
7170ex 413 . . . 4 (((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) → (𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺))
72 simpr 485 . . . 4 ((𝜑𝐴 ∈ On) → 𝐴 ∈ On)
736, 10, 14, 18, 24, 44, 71, 72tfindsd 42949 . . 3 ((𝜑𝐴 ∈ On) → (𝐴𝐺 → (𝑅1𝐴) ∈ 𝐺))
742, 73mpd 15 . 2 ((𝜑𝐴 ∈ On) → (𝑅1𝐴) ∈ 𝐺)
75 r1fnon 9758 . . . . . . 7 𝑅1 Fn On
7675fndmi 6650 . . . . . 6 dom 𝑅1 = On
7776eleq2i 2825 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
78 ndmfv 6923 . . . . 5 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = ∅)
7977, 78sylnbir 330 . . . 4 𝐴 ∈ On → (𝑅1𝐴) = ∅)
8079adantl 482 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ On) → (𝑅1𝐴) = ∅)
8121adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ On) → ∅ ∈ 𝐺)
8280, 81eqeltrd 2833 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ On) → (𝑅1𝐴) ∈ 𝐺)
8374, 82pm2.61dan 811 1 (𝜑 → (𝑅1𝐴) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wss 3947  c0 4321  𝒫 cpw 4601   ciun 4996  dom cdm 5675  Ord word 6360  Oncon0 6361  Lim wlim 6362  suc csuc 6363  cfv 6540  𝑅1cr1 9753  Univcgru 10781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-map 8818  df-r1 9755  df-gru 10782
This theorem is referenced by:  grurankrcld  42978
  Copyright terms: Public domain W3C validator