Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grur1cld Structured version   Visualization version   GIF version

Theorem grur1cld 40642
Description: Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypotheses
Ref Expression
grur1cld.1 (𝜑𝐺 ∈ Univ)
grur1cld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
grur1cld (𝜑 → (𝑅1𝐴) ∈ 𝐺)

Proof of Theorem grur1cld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grur1cld.2 . . . 4 (𝜑𝐴𝐺)
21adantr 483 . . 3 ((𝜑𝐴 ∈ On) → 𝐴𝐺)
3 eleq1 2899 . . . . 5 (𝑥 = ∅ → (𝑥𝐺 ↔ ∅ ∈ 𝐺))
4 fveq2 6667 . . . . . 6 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
54eleq1d 2896 . . . . 5 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1‘∅) ∈ 𝐺))
63, 5imbi12d 347 . . . 4 (𝑥 = ∅ → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (∅ ∈ 𝐺 → (𝑅1‘∅) ∈ 𝐺)))
7 eleq1 2899 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐺𝑦𝐺))
8 fveq2 6667 . . . . . 6 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
98eleq1d 2896 . . . . 5 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1𝑦) ∈ 𝐺))
107, 9imbi12d 347 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)))
11 eleq1 2899 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝐺 ↔ suc 𝑦𝐺))
12 fveq2 6667 . . . . . 6 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1312eleq1d 2896 . . . . 5 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1‘suc 𝑦) ∈ 𝐺))
1411, 13imbi12d 347 . . . 4 (𝑥 = suc 𝑦 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (suc 𝑦𝐺 → (𝑅1‘suc 𝑦) ∈ 𝐺)))
15 eleq1 2899 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝐴𝐺))
16 fveq2 6667 . . . . . 6 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
1716eleq1d 2896 . . . . 5 (𝑥 = 𝐴 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1𝐴) ∈ 𝐺))
1815, 17imbi12d 347 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (𝐴𝐺 → (𝑅1𝐴) ∈ 𝐺)))
19 r10 9194 . . . . . . 7 (𝑅1‘∅) = ∅
20 grur1cld.1 . . . . . . . 8 (𝜑𝐺 ∈ Univ)
2120, 1gru0eld 40639 . . . . . . 7 (𝜑 → ∅ ∈ 𝐺)
2219, 21eqeltrid 2916 . . . . . 6 (𝜑 → (𝑅1‘∅) ∈ 𝐺)
2322adantr 483 . . . . 5 ((𝜑𝐴 ∈ On) → (𝑅1‘∅) ∈ 𝐺)
2423a1d 25 . . . 4 ((𝜑𝐴 ∈ On) → (∅ ∈ 𝐺 → (𝑅1‘∅) ∈ 𝐺))
25 simpl1 1186 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝜑𝐴 ∈ On))
26 simpl2 1187 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦 ∈ On)
2720adantr 483 . . . . . . . . 9 ((𝜑𝐴 ∈ On) → 𝐺 ∈ Univ)
2825, 27syl 17 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝐺 ∈ Univ)
29 simpr 487 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → suc 𝑦𝐺)
30 sssucid 6265 . . . . . . . . 9 𝑦 ⊆ suc 𝑦
3130a1i 11 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦 ⊆ suc 𝑦)
32 gruss 10215 . . . . . . . 8 ((𝐺 ∈ Univ ∧ suc 𝑦𝐺𝑦 ⊆ suc 𝑦) → 𝑦𝐺)
3328, 29, 31, 32syl3anc 1366 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦𝐺)
34 simpl3 1188 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺))
3533, 34mpd 15 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑅1𝑦) ∈ 𝐺)
36 r1suc 9196 . . . . . . . 8 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37363ad2ant2 1129 . . . . . . 7 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
38273ad2ant1 1128 . . . . . . . 8 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → 𝐺 ∈ Univ)
39 simp3 1133 . . . . . . . 8 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1𝑦) ∈ 𝐺)
40 grupw 10214 . . . . . . . 8 ((𝐺 ∈ Univ ∧ (𝑅1𝑦) ∈ 𝐺) → 𝒫 (𝑅1𝑦) ∈ 𝐺)
4138, 39, 40syl2anc 586 . . . . . . 7 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → 𝒫 (𝑅1𝑦) ∈ 𝐺)
4237, 41eqeltrd 2912 . . . . . 6 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1‘suc 𝑦) ∈ 𝐺)
4325, 26, 35, 42syl3anc 1366 . . . . 5 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑅1‘suc 𝑦) ∈ 𝐺)
4443ex 415 . . . 4 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) → (suc 𝑦𝐺 → (𝑅1‘suc 𝑦) ∈ 𝐺))
45 simpr 487 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝑥𝐺)
46 simpl2 1187 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → Lim 𝑥)
47 r1lim 9198 . . . . . . 7 ((𝑥𝐺 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4845, 46, 47syl2anc 586 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
49 simpl1 1186 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝜑𝐴 ∈ On))
5049, 27syl 17 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝐺 ∈ Univ)
51 simpl3 1188 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺))
52 simpl1l 1219 . . . . . . . . 9 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝜑)
53 simpl1 1186 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝜑)
5453, 20syl 17 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝐺 ∈ Univ)
55 simpl3 1188 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑥𝐺)
56 simpl2 1187 . . . . . . . . . . . . 13 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → Lim 𝑥)
57 limord 6247 . . . . . . . . . . . . 13 (Lim 𝑥 → Ord 𝑥)
5856, 57syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → Ord 𝑥)
59 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝑥)
60 ordelss 6204 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦𝑥)
6158, 59, 60syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝑥)
62 gruss 10215 . . . . . . . . . . 11 ((𝐺 ∈ Univ ∧ 𝑥𝐺𝑦𝑥) → 𝑦𝐺)
6354, 55, 61, 62syl3anc 1366 . . . . . . . . . 10 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝐺)
6463ralrimiva 3181 . . . . . . . . 9 ((𝜑 ∧ Lim 𝑥𝑥𝐺) → ∀𝑦𝑥 𝑦𝐺)
6552, 46, 45, 64syl3anc 1366 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 𝑦𝐺)
66 ralim 3161 . . . . . . . 8 (∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺) → (∀𝑦𝑥 𝑦𝐺 → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺))
6751, 65, 66sylc 65 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
68 gruiun 10218 . . . . . . 7 ((𝐺 ∈ Univ ∧ 𝑥𝐺 ∧ ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
6950, 45, 67, 68syl3anc 1366 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
7048, 69eqeltrd 2912 . . . . 5 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝑅1𝑥) ∈ 𝐺)
7170ex 415 . . . 4 (((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) → (𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺))
72 simpr 487 . . . 4 ((𝜑𝐴 ∈ On) → 𝐴 ∈ On)
736, 10, 14, 18, 24, 44, 71, 72tfindsd 40638 . . 3 ((𝜑𝐴 ∈ On) → (𝐴𝐺 → (𝑅1𝐴) ∈ 𝐺))
742, 73mpd 15 . 2 ((𝜑𝐴 ∈ On) → (𝑅1𝐴) ∈ 𝐺)
75 r1fnon 9193 . . . . . . 7 𝑅1 Fn On
76 fndm 6452 . . . . . . 7 (𝑅1 Fn On → dom 𝑅1 = On)
7775, 76ax-mp 5 . . . . . 6 dom 𝑅1 = On
7877eleq2i 2903 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
79 ndmfv 6697 . . . . 5 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = ∅)
8078, 79sylnbir 333 . . . 4 𝐴 ∈ On → (𝑅1𝐴) = ∅)
8180adantl 484 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ On) → (𝑅1𝐴) = ∅)
8221adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ On) → ∅ ∈ 𝐺)
8381, 82eqeltrd 2912 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ On) → (𝑅1𝐴) ∈ 𝐺)
8474, 83pm2.61dan 811 1 (𝜑 → (𝑅1𝐴) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wral 3137  wss 3933  c0 4288  𝒫 cpw 4536   ciun 4916  dom cdm 5552  Ord word 6187  Oncon0 6188  Lim wlim 6189  suc csuc 6190   Fn wfn 6347  cfv 6352  𝑅1cr1 9188  Univcgru 10209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-map 8405  df-r1 9190  df-gru 10210
This theorem is referenced by:  grurankrcld  40644
  Copyright terms: Public domain W3C validator