Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grur1cld Structured version   Visualization version   GIF version

Theorem grur1cld 42180
Description: Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypotheses
Ref Expression
grur1cld.1 (𝜑𝐺 ∈ Univ)
grur1cld.2 (𝜑𝐴𝐺)
Assertion
Ref Expression
grur1cld (𝜑 → (𝑅1𝐴) ∈ 𝐺)

Proof of Theorem grur1cld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grur1cld.2 . . . 4 (𝜑𝐴𝐺)
21adantr 481 . . 3 ((𝜑𝐴 ∈ On) → 𝐴𝐺)
3 eleq1 2824 . . . . 5 (𝑥 = ∅ → (𝑥𝐺 ↔ ∅ ∈ 𝐺))
4 fveq2 6825 . . . . . 6 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
54eleq1d 2821 . . . . 5 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1‘∅) ∈ 𝐺))
63, 5imbi12d 344 . . . 4 (𝑥 = ∅ → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (∅ ∈ 𝐺 → (𝑅1‘∅) ∈ 𝐺)))
7 eleq1 2824 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐺𝑦𝐺))
8 fveq2 6825 . . . . . 6 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
98eleq1d 2821 . . . . 5 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1𝑦) ∈ 𝐺))
107, 9imbi12d 344 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)))
11 eleq1 2824 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝐺 ↔ suc 𝑦𝐺))
12 fveq2 6825 . . . . . 6 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1312eleq1d 2821 . . . . 5 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1‘suc 𝑦) ∈ 𝐺))
1411, 13imbi12d 344 . . . 4 (𝑥 = suc 𝑦 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (suc 𝑦𝐺 → (𝑅1‘suc 𝑦) ∈ 𝐺)))
15 eleq1 2824 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝐴𝐺))
16 fveq2 6825 . . . . . 6 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
1716eleq1d 2821 . . . . 5 (𝑥 = 𝐴 → ((𝑅1𝑥) ∈ 𝐺 ↔ (𝑅1𝐴) ∈ 𝐺))
1815, 17imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺) ↔ (𝐴𝐺 → (𝑅1𝐴) ∈ 𝐺)))
19 r10 9625 . . . . . . 7 (𝑅1‘∅) = ∅
20 grur1cld.1 . . . . . . . 8 (𝜑𝐺 ∈ Univ)
2120, 1gru0eld 42177 . . . . . . 7 (𝜑 → ∅ ∈ 𝐺)
2219, 21eqeltrid 2841 . . . . . 6 (𝜑 → (𝑅1‘∅) ∈ 𝐺)
2322adantr 481 . . . . 5 ((𝜑𝐴 ∈ On) → (𝑅1‘∅) ∈ 𝐺)
2423a1d 25 . . . 4 ((𝜑𝐴 ∈ On) → (∅ ∈ 𝐺 → (𝑅1‘∅) ∈ 𝐺))
25 simpl1 1190 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝜑𝐴 ∈ On))
26 simpl2 1191 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦 ∈ On)
2720adantr 481 . . . . . . . . 9 ((𝜑𝐴 ∈ On) → 𝐺 ∈ Univ)
2825, 27syl 17 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝐺 ∈ Univ)
29 simpr 485 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → suc 𝑦𝐺)
30 sssucid 6381 . . . . . . . . 9 𝑦 ⊆ suc 𝑦
3130a1i 11 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦 ⊆ suc 𝑦)
32 gruss 10653 . . . . . . . 8 ((𝐺 ∈ Univ ∧ suc 𝑦𝐺𝑦 ⊆ suc 𝑦) → 𝑦𝐺)
3328, 29, 31, 32syl3anc 1370 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → 𝑦𝐺)
34 simpl3 1192 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺))
3533, 34mpd 15 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑅1𝑦) ∈ 𝐺)
36 r1suc 9627 . . . . . . . 8 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37363ad2ant2 1133 . . . . . . 7 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
38273ad2ant1 1132 . . . . . . . 8 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → 𝐺 ∈ Univ)
39 simp3 1137 . . . . . . . 8 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1𝑦) ∈ 𝐺)
40 grupw 10652 . . . . . . . 8 ((𝐺 ∈ Univ ∧ (𝑅1𝑦) ∈ 𝐺) → 𝒫 (𝑅1𝑦) ∈ 𝐺)
4138, 39, 40syl2anc 584 . . . . . . 7 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → 𝒫 (𝑅1𝑦) ∈ 𝐺)
4237, 41eqeltrd 2837 . . . . . 6 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑅1𝑦) ∈ 𝐺) → (𝑅1‘suc 𝑦) ∈ 𝐺)
4325, 26, 35, 42syl3anc 1370 . . . . 5 ((((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ suc 𝑦𝐺) → (𝑅1‘suc 𝑦) ∈ 𝐺)
4443ex 413 . . . 4 (((𝜑𝐴 ∈ On) ∧ 𝑦 ∈ On ∧ (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) → (suc 𝑦𝐺 → (𝑅1‘suc 𝑦) ∈ 𝐺))
45 simpr 485 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝑥𝐺)
46 simpl2 1191 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → Lim 𝑥)
47 r1lim 9629 . . . . . . 7 ((𝑥𝐺 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4845, 46, 47syl2anc 584 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
49 simpl1 1190 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝜑𝐴 ∈ On))
5049, 27syl 17 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝐺 ∈ Univ)
51 simpl3 1192 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺))
52 simpl1l 1223 . . . . . . . . 9 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝜑)
53 simpl1 1190 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝜑)
5453, 20syl 17 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝐺 ∈ Univ)
55 simpl3 1192 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑥𝐺)
56 simpl2 1191 . . . . . . . . . . . . 13 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → Lim 𝑥)
57 limord 6361 . . . . . . . . . . . . 13 (Lim 𝑥 → Ord 𝑥)
5856, 57syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → Ord 𝑥)
59 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝑥)
60 ordelss 6318 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦𝑥)
6158, 59, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝑥)
62 gruss 10653 . . . . . . . . . . 11 ((𝐺 ∈ Univ ∧ 𝑥𝐺𝑦𝑥) → 𝑦𝐺)
6354, 55, 61, 62syl3anc 1370 . . . . . . . . . 10 (((𝜑 ∧ Lim 𝑥𝑥𝐺) ∧ 𝑦𝑥) → 𝑦𝐺)
6463ralrimiva 3139 . . . . . . . . 9 ((𝜑 ∧ Lim 𝑥𝑥𝐺) → ∀𝑦𝑥 𝑦𝐺)
6552, 46, 45, 64syl3anc 1370 . . . . . . . 8 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 𝑦𝐺)
66 ralim 3085 . . . . . . . 8 (∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺) → (∀𝑦𝑥 𝑦𝐺 → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺))
6751, 65, 66sylc 65 . . . . . . 7 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
68 gruiun 10656 . . . . . . 7 ((𝐺 ∈ Univ ∧ 𝑥𝐺 ∧ ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝐺) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
6950, 45, 67, 68syl3anc 1370 . . . . . 6 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝐺)
7048, 69eqeltrd 2837 . . . . 5 ((((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) ∧ 𝑥𝐺) → (𝑅1𝑥) ∈ 𝐺)
7170ex 413 . . . 4 (((𝜑𝐴 ∈ On) ∧ Lim 𝑥 ∧ ∀𝑦𝑥 (𝑦𝐺 → (𝑅1𝑦) ∈ 𝐺)) → (𝑥𝐺 → (𝑅1𝑥) ∈ 𝐺))
72 simpr 485 . . . 4 ((𝜑𝐴 ∈ On) → 𝐴 ∈ On)
736, 10, 14, 18, 24, 44, 71, 72tfindsd 42153 . . 3 ((𝜑𝐴 ∈ On) → (𝐴𝐺 → (𝑅1𝐴) ∈ 𝐺))
742, 73mpd 15 . 2 ((𝜑𝐴 ∈ On) → (𝑅1𝐴) ∈ 𝐺)
75 r1fnon 9624 . . . . . . 7 𝑅1 Fn On
7675fndmi 6589 . . . . . 6 dom 𝑅1 = On
7776eleq2i 2828 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
78 ndmfv 6860 . . . . 5 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = ∅)
7977, 78sylnbir 330 . . . 4 𝐴 ∈ On → (𝑅1𝐴) = ∅)
8079adantl 482 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ On) → (𝑅1𝐴) = ∅)
8121adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ On) → ∅ ∈ 𝐺)
8280, 81eqeltrd 2837 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ On) → (𝑅1𝐴) ∈ 𝐺)
8374, 82pm2.61dan 810 1 (𝜑 → (𝑅1𝐴) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wss 3898  c0 4269  𝒫 cpw 4547   ciun 4941  dom cdm 5620  Ord word 6301  Oncon0 6302  Lim wlim 6303  suc csuc 6304  cfv 6479  𝑅1cr1 9619  Univcgru 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-map 8688  df-r1 9621  df-gru 10648
This theorem is referenced by:  grurankrcld  42182
  Copyright terms: Public domain W3C validator