MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruss Structured version   Visualization version   GIF version

Theorem gruss 10797
Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruss ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)

Proof of Theorem gruss
StepHypRef Expression
1 elpw2g 5344 . . . 4 (𝐴𝑈 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
21adantl 481 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
3 grupw 10796 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
4 gruelss 10795 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 𝐴𝑈) → 𝒫 𝐴𝑈)
53, 4syldan 590 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
65sseld 3981 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵 ∈ 𝒫 𝐴𝐵𝑈))
72, 6sylbird 260 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵𝐴𝐵𝑈))
873impia 1116 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wcel 2105  wss 3948  𝒫 cpw 4602  Univcgru 10791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-tr 5266  df-iota 6495  df-fv 6551  df-ov 7415  df-gru 10792
This theorem is referenced by:  grurn  10802  gruima  10803  gruxp  10808  grumap  10809  gruixp  10810  gruiin  10811  grudomon  10818  gruina  10819  gru0eld  43451  grur1cld  43454  grurankrcld  43456  grumnudlem  43507
  Copyright terms: Public domain W3C validator