![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruss | Structured version Visualization version GIF version |
Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruss | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 5344 | . . . 4 ⊢ (𝐴 ∈ 𝑈 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
3 | grupw 10796 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) | |
4 | gruelss 10795 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝐴 ∈ 𝑈) → 𝒫 𝐴 ⊆ 𝑈) | |
5 | 3, 4 | syldan 590 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ⊆ 𝑈) |
6 | 5 | sseld 3981 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝒫 𝐴 → 𝐵 ∈ 𝑈)) |
7 | 2, 6 | sylbird 260 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ 𝑈)) |
8 | 7 | 3impia 1116 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 Univcgru 10791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-tr 5266 df-iota 6495 df-fv 6551 df-ov 7415 df-gru 10792 |
This theorem is referenced by: grurn 10802 gruima 10803 gruxp 10808 grumap 10809 gruixp 10810 gruiin 10811 grudomon 10818 gruina 10819 gru0eld 43451 grur1cld 43454 grurankrcld 43456 grumnudlem 43507 |
Copyright terms: Public domain | W3C validator |