MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruss Structured version   Visualization version   GIF version

Theorem gruss 10483
Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruss ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)

Proof of Theorem gruss
StepHypRef Expression
1 elpw2g 5263 . . . 4 (𝐴𝑈 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
21adantl 481 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
3 grupw 10482 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
4 gruelss 10481 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 𝐴𝑈) → 𝒫 𝐴𝑈)
53, 4syldan 590 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
65sseld 3916 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵 ∈ 𝒫 𝐴𝐵𝑈))
72, 6sylbird 259 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵𝐴𝐵𝑈))
873impia 1115 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wss 3883  𝒫 cpw 4530  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-tr 5188  df-iota 6376  df-fv 6426  df-ov 7258  df-gru 10478
This theorem is referenced by:  grurn  10488  gruima  10489  gruxp  10494  grumap  10495  gruixp  10496  gruiin  10497  grudomon  10504  gruina  10505  gru0eld  41736  grur1cld  41739  grurankrcld  41741  grumnudlem  41792
  Copyright terms: Public domain W3C validator