Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruss | Structured version Visualization version GIF version |
Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruss | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 5237 | . . . 4 ⊢ (𝐴 ∈ 𝑈 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | adantl 485 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
3 | grupw 10409 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) | |
4 | gruelss 10408 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝐴 ∈ 𝑈) → 𝒫 𝐴 ⊆ 𝑈) | |
5 | 3, 4 | syldan 594 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ⊆ 𝑈) |
6 | 5 | sseld 3900 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝒫 𝐴 → 𝐵 ∈ 𝑈)) |
7 | 2, 6 | sylbird 263 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ 𝑈)) |
8 | 7 | 3impia 1119 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2110 ⊆ wss 3866 𝒫 cpw 4513 Univcgru 10404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-tr 5162 df-iota 6338 df-fv 6388 df-ov 7216 df-gru 10405 |
This theorem is referenced by: grurn 10415 gruima 10416 gruxp 10421 grumap 10422 gruixp 10423 gruiin 10424 grudomon 10431 gruina 10432 gru0eld 41520 grur1cld 41523 grurankrcld 41525 grumnudlem 41576 |
Copyright terms: Public domain | W3C validator |