MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruss Structured version   Visualization version   GIF version

Theorem gruss 10410
Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruss ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)

Proof of Theorem gruss
StepHypRef Expression
1 elpw2g 5237 . . . 4 (𝐴𝑈 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
21adantl 485 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
3 grupw 10409 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
4 gruelss 10408 . . . . 5 ((𝑈 ∈ Univ ∧ 𝒫 𝐴𝑈) → 𝒫 𝐴𝑈)
53, 4syldan 594 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
65sseld 3900 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵 ∈ 𝒫 𝐴𝐵𝑈))
72, 6sylbird 263 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐵𝐴𝐵𝑈))
873impia 1119 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2110  wss 3866  𝒫 cpw 4513  Univcgru 10404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-tr 5162  df-iota 6338  df-fv 6388  df-ov 7216  df-gru 10405
This theorem is referenced by:  grurn  10415  gruima  10416  gruxp  10421  grumap  10422  gruixp  10423  gruiin  10424  grudomon  10431  gruina  10432  gru0eld  41520  grur1cld  41523  grurankrcld  41525  grumnudlem  41576
  Copyright terms: Public domain W3C validator