Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruss | Structured version Visualization version GIF version |
Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruss | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 5268 | . . . 4 ⊢ (𝐴 ∈ 𝑈 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
3 | grupw 10551 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) | |
4 | gruelss 10550 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝒫 𝐴 ∈ 𝑈) → 𝒫 𝐴 ⊆ 𝑈) | |
5 | 3, 4 | syldan 591 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ⊆ 𝑈) |
6 | 5 | sseld 3920 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ∈ 𝒫 𝐴 → 𝐵 ∈ 𝑈)) |
7 | 2, 6 | sylbird 259 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ 𝑈)) |
8 | 7 | 3impia 1116 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 Univcgru 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-tr 5192 df-iota 6391 df-fv 6441 df-ov 7278 df-gru 10547 |
This theorem is referenced by: grurn 10557 gruima 10558 gruxp 10563 grumap 10564 gruixp 10565 gruiin 10566 grudomon 10573 gruina 10574 gru0eld 41847 grur1cld 41850 grurankrcld 41852 grumnudlem 41903 |
Copyright terms: Public domain | W3C validator |