![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grupw | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
grupw | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrug 10809 | . . . . 5 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)))) | |
2 | 1 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈))) |
3 | 2 | simprd 495 | . . 3 ⊢ (𝑈 ∈ Univ → ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)) |
4 | simp1 1134 | . . . 4 ⊢ ((𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → 𝒫 𝑦 ∈ 𝑈) | |
5 | 4 | ralimi 3078 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈) |
6 | pweq 4612 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝒫 𝑦 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) |
8 | 7 | rspccv 3604 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈 → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
9 | 3, 5, 8 | 3syl 18 | . 2 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
10 | 9 | imp 406 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 𝒫 cpw 4598 {cpr 4626 ∪ cuni 4903 Tr wtr 5259 ran crn 5673 (class class class)co 7414 ↑m cmap 8838 Univcgru 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-tr 5260 df-iota 6494 df-fv 6550 df-ov 7417 df-gru 10808 |
This theorem is referenced by: gruss 10813 grurn 10818 gruxp 10824 grumap 10825 gruwun 10830 intgru 10831 gruina 10835 grur1a 10836 grur1cld 43641 grumnudlem 43694 |
Copyright terms: Public domain | W3C validator |