MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupw Structured version   Visualization version   GIF version

Theorem grupw 10864
Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupw ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)

Proof of Theorem grupw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 10861 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈))))
21ibi 267 . . . 4 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈)))
32simprd 495 . . 3 (𝑈 ∈ Univ → ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈))
4 simp1 1136 . . . 4 ((𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈) → 𝒫 𝑦𝑈)
54ralimi 3089 . . 3 (∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈) → ∀𝑦𝑈 𝒫 𝑦𝑈)
6 pweq 4636 . . . . 5 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
76eleq1d 2829 . . . 4 (𝑦 = 𝐴 → (𝒫 𝑦𝑈 ↔ 𝒫 𝐴𝑈))
87rspccv 3632 . . 3 (∀𝑦𝑈 𝒫 𝑦𝑈 → (𝐴𝑈 → 𝒫 𝐴𝑈))
93, 5, 83syl 18 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → 𝒫 𝐴𝑈))
109imp 406 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  𝒫 cpw 4622  {cpr 4650   cuni 4931  Tr wtr 5283  ran crn 5701  (class class class)co 7448  m cmap 8884  Univcgru 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-tr 5284  df-iota 6525  df-fv 6581  df-ov 7451  df-gru 10860
This theorem is referenced by:  gruss  10865  grurn  10870  gruxp  10876  grumap  10877  gruwun  10882  intgru  10883  gruina  10887  grur1a  10888  grur1cld  44201  grumnudlem  44254
  Copyright terms: Public domain W3C validator