MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grupw Structured version   Visualization version   GIF version

Theorem grupw 10689
Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grupw ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)

Proof of Theorem grupw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 10686 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈))))
21ibi 267 . . . 4 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈)))
32simprd 495 . . 3 (𝑈 ∈ Univ → ∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈))
4 simp1 1136 . . . 4 ((𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈) → 𝒫 𝑦𝑈)
54ralimi 3066 . . 3 (∀𝑦𝑈 (𝒫 𝑦𝑈 ∧ ∀𝑥𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈m 𝑦) ran 𝑥𝑈) → ∀𝑦𝑈 𝒫 𝑦𝑈)
6 pweq 4565 . . . . 5 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
76eleq1d 2813 . . . 4 (𝑦 = 𝐴 → (𝒫 𝑦𝑈 ↔ 𝒫 𝐴𝑈))
87rspccv 3574 . . 3 (∀𝑦𝑈 𝒫 𝑦𝑈 → (𝐴𝑈 → 𝒫 𝐴𝑈))
93, 5, 83syl 18 . 2 (𝑈 ∈ Univ → (𝐴𝑈 → 𝒫 𝐴𝑈))
109imp 406 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝒫 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  𝒫 cpw 4551  {cpr 4579   cuni 4858  Tr wtr 5199  ran crn 5620  (class class class)co 7349  m cmap 8753  Univcgru 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-tr 5200  df-iota 6438  df-fv 6490  df-ov 7352  df-gru 10685
This theorem is referenced by:  gruss  10690  grurn  10695  gruxp  10701  grumap  10702  gruwun  10707  intgru  10708  gruina  10712  grur1a  10713  grur1cld  44215  grumnudlem  44268
  Copyright terms: Public domain W3C validator