| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grupw | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| grupw | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgrug 10752 | . . . . 5 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)))) | |
| 2 | 1 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈))) |
| 3 | 2 | simprd 495 | . . 3 ⊢ (𝑈 ∈ Univ → ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)) |
| 4 | simp1 1136 | . . . 4 ⊢ ((𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → 𝒫 𝑦 ∈ 𝑈) | |
| 5 | 4 | ralimi 3067 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈) |
| 6 | pweq 4580 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
| 7 | 6 | eleq1d 2814 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝒫 𝑦 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) |
| 8 | 7 | rspccv 3588 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈 → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
| 9 | 3, 5, 8 | 3syl 18 | . 2 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
| 10 | 9 | imp 406 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 𝒫 cpw 4566 {cpr 4594 ∪ cuni 4874 Tr wtr 5217 ran crn 5642 (class class class)co 7390 ↑m cmap 8802 Univcgru 10750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-tr 5218 df-iota 6467 df-fv 6522 df-ov 7393 df-gru 10751 |
| This theorem is referenced by: gruss 10756 grurn 10761 gruxp 10767 grumap 10768 gruwun 10773 intgru 10774 gruina 10778 grur1a 10779 grur1cld 44228 grumnudlem 44281 |
| Copyright terms: Public domain | W3C validator |