![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grupw | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
grupw | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrug 10830 | . . . . 5 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)))) | |
2 | 1 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈))) |
3 | 2 | simprd 495 | . . 3 ⊢ (𝑈 ∈ Univ → ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)) |
4 | simp1 1135 | . . . 4 ⊢ ((𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → 𝒫 𝑦 ∈ 𝑈) | |
5 | 4 | ralimi 3081 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈) |
6 | pweq 4619 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
7 | 6 | eleq1d 2824 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝒫 𝑦 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) |
8 | 7 | rspccv 3619 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈 → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
9 | 3, 5, 8 | 3syl 18 | . 2 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
10 | 9 | imp 406 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 𝒫 cpw 4605 {cpr 4633 ∪ cuni 4912 Tr wtr 5265 ran crn 5690 (class class class)co 7431 ↑m cmap 8865 Univcgru 10828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-tr 5266 df-iota 6516 df-fv 6571 df-ov 7434 df-gru 10829 |
This theorem is referenced by: gruss 10834 grurn 10839 gruxp 10845 grumap 10846 gruwun 10851 intgru 10852 gruina 10856 grur1a 10857 grur1cld 44228 grumnudlem 44281 |
Copyright terms: Public domain | W3C validator |