![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grupw | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
grupw | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrug 10861 | . . . . 5 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)))) | |
2 | 1 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈))) |
3 | 2 | simprd 495 | . . 3 ⊢ (𝑈 ∈ Univ → ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)) |
4 | simp1 1136 | . . . 4 ⊢ ((𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → 𝒫 𝑦 ∈ 𝑈) | |
5 | 4 | ralimi 3089 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈) |
6 | pweq 4636 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
7 | 6 | eleq1d 2829 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝒫 𝑦 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) |
8 | 7 | rspccv 3632 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈 → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
9 | 3, 5, 8 | 3syl 18 | . 2 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) |
10 | 9 | imp 406 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 Tr wtr 5283 ran crn 5701 (class class class)co 7448 ↑m cmap 8884 Univcgru 10859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-tr 5284 df-iota 6525 df-fv 6581 df-ov 7451 df-gru 10860 |
This theorem is referenced by: gruss 10865 grurn 10870 gruxp 10876 grumap 10877 gruwun 10882 intgru 10883 gruina 10887 grur1a 10888 grur1cld 44201 grumnudlem 44254 |
Copyright terms: Public domain | W3C validator |