|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > grupw | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| grupw | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elgrug 10832 | . . . . 5 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)))) | |
| 2 | 1 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈))) | 
| 3 | 2 | simprd 495 | . . 3 ⊢ (𝑈 ∈ Univ → ∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈)) | 
| 4 | simp1 1137 | . . . 4 ⊢ ((𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → 𝒫 𝑦 ∈ 𝑈) | |
| 5 | 4 | ralimi 3083 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 (𝒫 𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 {𝑦, 𝑥} ∈ 𝑈 ∧ ∀𝑥 ∈ (𝑈 ↑m 𝑦)∪ ran 𝑥 ∈ 𝑈) → ∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈) | 
| 6 | pweq 4614 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
| 7 | 6 | eleq1d 2826 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝒫 𝑦 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈)) | 
| 8 | 7 | rspccv 3619 | . . 3 ⊢ (∀𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈 → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) | 
| 9 | 3, 5, 8 | 3syl 18 | . 2 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈)) | 
| 10 | 9 | imp 406 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝒫 𝐴 ∈ 𝑈) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 𝒫 cpw 4600 {cpr 4628 ∪ cuni 4907 Tr wtr 5259 ran crn 5686 (class class class)co 7431 ↑m cmap 8866 Univcgru 10830 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-tr 5260 df-iota 6514 df-fv 6569 df-ov 7434 df-gru 10831 | 
| This theorem is referenced by: gruss 10836 grurn 10841 gruxp 10847 grumap 10848 gruwun 10853 intgru 10854 gruina 10858 grur1a 10859 grur1cld 44251 grumnudlem 44304 | 
| Copyright terms: Public domain | W3C validator |