MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1a Structured version   Visualization version   GIF version

Theorem grur1a 10584
Description: A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
grur1a (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)

Proof of Theorem grur1a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruina.1 . . . . . 6 𝐴 = (𝑈 ∩ On)
2 inss1 4163 . . . . . 6 (𝑈 ∩ On) ⊆ 𝑈
31, 2eqsstri 3956 . . . . 5 𝐴𝑈
4 sseq2 3948 . . . . 5 (𝑈 = ∅ → (𝐴𝑈𝐴 ⊆ ∅))
53, 4mpbii 232 . . . 4 (𝑈 = ∅ → 𝐴 ⊆ ∅)
6 ss0 4333 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
7 fveq2 6783 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
8 r10 9535 . . . . . 6 (𝑅1‘∅) = ∅
97, 8eqtrdi 2795 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
10 0ss 4331 . . . . 5 ∅ ⊆ 𝑈
119, 10eqsstrdi 3976 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
125, 6, 113syl 18 . . 3 (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
1312a1i 11 . 2 (𝑈 ∈ Univ → (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈))
141gruina 10583 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
15 inawina 10455 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
16 winaon 10453 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
17 winalim 10460 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
18 r1lim 9539 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
1916, 17, 18syl2anc 584 . . . . 5 (𝐴 ∈ Inaccw → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
2014, 15, 193syl 18 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
21 inss2 4164 . . . . . . . . . . . 12 (𝑈 ∩ On) ⊆ On
221, 21eqsstri 3956 . . . . . . . . . . 11 𝐴 ⊆ On
2322sseli 3918 . . . . . . . . . 10 (𝑥𝐴𝑥 ∈ On)
24 eleq1 2827 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
25 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
2625, 8eqtrdi 2795 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (𝑅1𝑥) = ∅)
2726eleq1d 2824 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2824, 27imbi12d 345 . . . . . . . . . . . 12 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (∅ ∈ 𝐴 → ∅ ∈ 𝑈)))
29 eleq1 2827 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
30 fveq2 6783 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
3130eleq1d 2824 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
3229, 31imbi12d 345 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈)))
33 eleq1 2827 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
34 fveq2 6783 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
3534eleq1d 2824 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
3633, 35imbi12d 345 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
373sseli 3918 . . . . . . . . . . . . 13 (∅ ∈ 𝐴 → ∅ ∈ 𝑈)
3837a1i 11 . . . . . . . . . . . 12 (𝑈 ∈ Univ → (∅ ∈ 𝐴 → ∅ ∈ 𝑈))
39 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → suc 𝑦𝐴)
40 elelsuc 6342 . . . . . . . . . . . . . . . . . 18 (suc 𝑦𝐴 → suc 𝑦 ∈ suc 𝐴)
413sseli 3918 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑦𝐴 → suc 𝑦𝑈)
4241ne0d 4270 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑦𝐴𝑈 ≠ ∅)
4314, 15, 163syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
4442, 43sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝐴 ∈ On)
45 eloni 6280 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
46 ordsucelsuc 7678 . . . . . . . . . . . . . . . . . . 19 (Ord 𝐴 → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4744, 45, 463syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4840, 47syl5ibr 245 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (suc 𝑦𝐴𝑦𝐴))
4939, 48mpd 15 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝑦𝐴)
50 grupw 10560 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
5150ex 413 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ Univ → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
5251adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
53 r1suc 9537 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
5453eleq1d 2824 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
5554biimprcd 249 . . . . . . . . . . . . . . . . 17 (𝒫 (𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))
5652, 55syl6 35 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5749, 56embantd 59 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5857ex 413 . . . . . . . . . . . . . 14 (𝑈 ∈ Univ → (suc 𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
5958com23 86 . . . . . . . . . . . . 13 (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
6059com4r 94 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈))))
61 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
623sseli 3918 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴𝑥𝑈)
6362ne0d 4270 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝑈 ≠ ∅)
6463, 43sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝐴 ∈ On)
65 ontr1 6316 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
66 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
6765, 66syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
6867expd 416 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑦𝑥 → (𝑥𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
6968com3r 87 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 ∈ On → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
7061, 64, 69sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
7170imp 407 . . . . . . . . . . . . . . . . 17 (((𝑈 ∈ Univ ∧ 𝑥𝐴) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
7271ralimdva 3109 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
73 gruiun 10564 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈)
74733expia 1120 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7562, 74sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7672, 75syld 47 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
77 vex 3437 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
78 r1lim 9539 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
7977, 78mpan 687 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8079eleq1d 2824 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝑅1𝑥) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
8180biimprd 247 . . . . . . . . . . . . . . 15 (Lim 𝑥 → ( 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 → (𝑅1𝑥) ∈ 𝑈))
8276, 81sylan9r 509 . . . . . . . . . . . . . 14 ((Lim 𝑥 ∧ (𝑈 ∈ Univ ∧ 𝑥𝐴)) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))
8382exp32 421 . . . . . . . . . . . . 13 (Lim 𝑥 → (𝑈 ∈ Univ → (𝑥𝐴 → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))))
8483com34 91 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑈 ∈ Univ → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈))))
8528, 32, 36, 38, 60, 84tfinds2 7719 . . . . . . . . . . 11 (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈)))
8685com3r 87 . . . . . . . . . 10 (𝑥𝐴 → (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈)))
8723, 86mpd 15 . . . . . . . . 9 (𝑥𝐴 → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈))
8887impcom 408 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ∈ 𝑈)
89 gruelss 10559 . . . . . . . 8 ((𝑈 ∈ Univ ∧ (𝑅1𝑥) ∈ 𝑈) → (𝑅1𝑥) ⊆ 𝑈)
9088, 89syldan 591 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ⊆ 𝑈)
9190ralrimiva 3104 . . . . . 6 (𝑈 ∈ Univ → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
92 iunss 4976 . . . . . 6 ( 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈 ↔ ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9391, 92sylibr 233 . . . . 5 (𝑈 ∈ Univ → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9493adantr 481 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9520, 94eqsstrd 3960 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) ⊆ 𝑈)
9695ex 413 . 2 (𝑈 ∈ Univ → (𝑈 ≠ ∅ → (𝑅1𝐴) ⊆ 𝑈))
9713, 96pm2.61dne 3032 1 (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  wral 3065  Vcvv 3433  cin 3887  wss 3888  c0 4257  𝒫 cpw 4534   ciun 4925  Ord word 6269  Oncon0 6270  Lim wlim 6271  suc csuc 6272  cfv 6437  𝑅1cr1 9529  Inaccwcwina 10447  Inacccina 10448  Univcgru 10555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-ac2 10228
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-r1 9531  df-card 9706  df-cf 9708  df-ac 9881  df-wina 10449  df-ina 10450  df-gru 10556
This theorem is referenced by:  grur1  10585
  Copyright terms: Public domain W3C validator