MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruuni Structured version   Visualization version   GIF version

Theorem gruuni 10759
Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
gruuni ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)

Proof of Theorem gruuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniiun 5024 . 2 𝐴 = 𝑥𝐴 𝑥
2 gruelss 10753 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
3 dfss3 3937 . . . 4 (𝐴𝑈 ↔ ∀𝑥𝐴 𝑥𝑈)
42, 3sylib 218 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ∀𝑥𝐴 𝑥𝑈)
5 gruiun 10758 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑥𝐴 𝑥𝑈)
64, 5mpd3an3 1464 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝑥𝐴 𝑥𝑈)
71, 6eqeltrid 2833 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wss 3916   cuni 4873   ciun 4957  Univcgru 10749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-map 8803  df-gru 10750
This theorem is referenced by:  gruwun  10772  gruina  10777  grumnudlem  44267
  Copyright terms: Public domain W3C validator