MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruuni Structured version   Visualization version   GIF version

Theorem gruuni 10018
Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
gruuni ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)

Proof of Theorem gruuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniiun 4844 . 2 𝐴 = 𝑥𝐴 𝑥
2 gruelss 10012 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
3 dfss3 3840 . . . 4 (𝐴𝑈 ↔ ∀𝑥𝐴 𝑥𝑈)
42, 3sylib 210 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ∀𝑥𝐴 𝑥𝑈)
5 gruiun 10017 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑥𝐴 𝑥𝑈)
64, 5mpd3an3 1442 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝑥𝐴 𝑥𝑈)
71, 6syl5eqel 2863 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wcel 2051  wral 3081  wss 3822   cuni 4708   ciun 4788  Univcgru 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-map 8206  df-gru 10009
This theorem is referenced by:  gruwun  10031  gruina  10036  grumnudlem  40034
  Copyright terms: Public domain W3C validator