![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruuni | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013.) |
Ref | Expression |
---|---|
gruuni | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4844 | . 2 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | gruelss 10012 | . . . 4 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → 𝐴 ⊆ 𝑈) | |
3 | dfss3 3840 | . . . 4 ⊢ (𝐴 ⊆ 𝑈 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝑈) | |
4 | 2, 3 | sylib 210 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝑈) |
5 | gruiun 10017 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈) | |
6 | 4, 5 | mpd3an3 1442 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈) |
7 | 1, 6 | syl5eqel 2863 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2051 ∀wral 3081 ⊆ wss 3822 ∪ cuni 4708 ∪ ciun 4788 Univcgru 10008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-map 8206 df-gru 10009 |
This theorem is referenced by: gruwun 10031 gruina 10036 grumnudlem 40034 |
Copyright terms: Public domain | W3C validator |