MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruuni Structured version   Visualization version   GIF version

Theorem gruuni 10753
Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
gruuni ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)

Proof of Theorem gruuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniiun 5022 . 2 𝐴 = 𝑥𝐴 𝑥
2 gruelss 10747 . . . 4 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
3 dfss3 3935 . . . 4 (𝐴𝑈 ↔ ∀𝑥𝐴 𝑥𝑈)
42, 3sylib 218 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ∀𝑥𝐴 𝑥𝑈)
5 gruiun 10752 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑥𝐴 𝑥𝑈)
64, 5mpd3an3 1464 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝑥𝐴 𝑥𝑈)
71, 6eqeltrid 2832 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wss 3914   cuni 4871   ciun 4955  Univcgru 10743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-gru 10744
This theorem is referenced by:  gruwun  10766  gruina  10771  grumnudlem  44274
  Copyright terms: Public domain W3C validator