| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grutr | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| grutr | ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgrug 10745 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4563 {cpr 4591 ∪ cuni 4871 Tr wtr 5214 ran crn 5639 (class class class)co 7387 ↑m cmap 8799 Univcgru 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-tr 5215 df-iota 6464 df-fv 6519 df-ov 7390 df-gru 10744 |
| This theorem is referenced by: gruelss 10747 gruwun 10766 intgru 10767 gruina 10771 grur1 10773 grutsk 10775 |
| Copyright terms: Public domain | W3C validator |