| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grutr | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| grutr | ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgrug 10683 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 𝒫 cpw 4547 {cpr 4575 ∪ cuni 4856 Tr wtr 5196 ran crn 5615 (class class class)co 7346 ↑m cmap 8750 Univcgru 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-tr 5197 df-iota 6437 df-fv 6489 df-ov 7349 df-gru 10682 |
| This theorem is referenced by: gruelss 10685 gruwun 10704 intgru 10705 gruina 10709 grur1 10711 grutsk 10713 |
| Copyright terms: Public domain | W3C validator |