Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grutr | Structured version Visualization version GIF version |
Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
grutr | ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrug 10479 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
3 | 2 | simpld 494 | 1 ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 𝒫 cpw 4530 {cpr 4560 ∪ cuni 4836 Tr wtr 5187 ran crn 5581 (class class class)co 7255 ↑m cmap 8573 Univcgru 10477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-tr 5188 df-iota 6376 df-fv 6426 df-ov 7258 df-gru 10478 |
This theorem is referenced by: gruelss 10481 gruwun 10500 intgru 10501 gruina 10505 grur1 10507 grutsk 10509 |
Copyright terms: Public domain | W3C validator |