| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grutr | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| grutr | ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elgrug 10686 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4551 {cpr 4579 ∪ cuni 4858 Tr wtr 5199 ran crn 5620 (class class class)co 7349 ↑m cmap 8753 Univcgru 10684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-tr 5200 df-iota 6438 df-fv 6490 df-ov 7352 df-gru 10685 |
| This theorem is referenced by: gruelss 10688 gruwun 10707 intgru 10708 gruina 10712 grur1 10714 grutsk 10716 |
| Copyright terms: Public domain | W3C validator |