Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grutr | Structured version Visualization version GIF version |
Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
grutr | ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elgrug 10557 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
3 | 2 | simpld 495 | 1 ⊢ (𝑈 ∈ Univ → Tr 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2107 ∀wral 3065 𝒫 cpw 4534 {cpr 4564 ∪ cuni 4840 Tr wtr 5192 ran crn 5591 (class class class)co 7284 ↑m cmap 8624 Univcgru 10555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-tr 5193 df-iota 6395 df-fv 6445 df-ov 7287 df-gru 10556 |
This theorem is referenced by: gruelss 10559 gruwun 10578 intgru 10579 gruina 10583 grur1 10585 grutsk 10587 |
Copyright terms: Public domain | W3C validator |