MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutr Structured version   Visualization version   GIF version

Theorem grutr 10550
Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
grutr (𝑈 ∈ Univ → Tr 𝑈)

Proof of Theorem grutr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 10549 . . 3 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
21ibi 266 . 2 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
32simpld 495 1 (𝑈 ∈ Univ → Tr 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2110  wral 3066  𝒫 cpw 4539  {cpr 4569   cuni 4845  Tr wtr 5196  ran crn 5591  (class class class)co 7271  m cmap 8598  Univcgru 10547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-tr 5197  df-iota 6390  df-fv 6440  df-ov 7274  df-gru 10548
This theorem is referenced by:  gruelss  10551  gruwun  10570  intgru  10571  gruina  10575  grur1  10577  grutsk  10579
  Copyright terms: Public domain W3C validator