| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version | ||
| Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| ima0 | ⊢ (𝐴 “ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5629 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
| 2 | res0 5932 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
| 3 | 2 | rneqi 5877 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
| 4 | rn0 5866 | . 2 ⊢ ran ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2758 | 1 ⊢ (𝐴 “ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 ran crn 5617 ↾ cres 5618 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: csbima12 6028 relimasn 6034 elimasni 6040 inisegn0 6047 predprc 6285 dffv3 6818 suppco 8136 supp0cosupp0 8138 ecexr 8627 fodomfi 9196 imafiOLD 9200 domunfican 9206 fodomfiOLD 9214 efgrelexlema 19659 dprdsn 19948 cnindis 23205 cnhaus 23267 cmpfi 23321 xkouni 23512 xkoccn 23532 mbfima 25556 ismbf2d 25566 limcnlp 25804 mdeg0 26000 pserulm 26356 old0 27798 made0 27816 negs0s 27966 negs1s 27967 spthispth 29700 dfpth2 29705 pthdlem2 29744 0pth 30100 1pthdlem2 30111 eupth2lemb 30212 disjpreima 32559 imadifxp 32576 2ndimaxp 32623 mptiffisupp 32669 swrdrndisj 32933 gsumpart 33032 zarclsint 33880 dstrvprob 34480 opelco3 35807 funpartlem 35975 poimirlem1 37660 poimirlem2 37661 poimirlem3 37662 poimirlem4 37663 poimirlem5 37664 poimirlem6 37665 poimirlem7 37666 poimirlem10 37669 poimirlem11 37670 poimirlem12 37671 poimirlem13 37672 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 poimirlem22 37681 poimirlem23 37682 poimirlem24 37683 poimirlem25 37684 poimirlem28 37687 poimirlem29 37688 poimirlem31 37690 he0 43816 smfresal 46825 predisj 48841 |
| Copyright terms: Public domain | W3C validator |