| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version | ||
| Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| ima0 | ⊢ (𝐴 “ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5632 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
| 2 | res0 5936 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
| 3 | 2 | rneqi 5881 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
| 4 | rn0 5870 | . 2 ⊢ ran ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2760 | 1 ⊢ (𝐴 “ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 ran crn 5620 ↾ cres 5621 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: csbima12 6032 relimasn 6038 elimasni 6044 inisegn0 6051 predprc 6290 dffv3 6824 suppco 8142 supp0cosupp0 8144 ecexr 8633 fodomfi 9203 imafiOLD 9207 domunfican 9213 fodomfiOLD 9221 efgrelexlema 19663 dprdsn 19952 cnindis 23208 cnhaus 23270 cmpfi 23324 xkouni 23515 xkoccn 23535 mbfima 25559 ismbf2d 25569 limcnlp 25807 mdeg0 26003 pserulm 26359 old0 27801 made0 27819 negs0s 27969 negs1s 27970 spthispth 29704 dfpth2 29709 pthdlem2 29748 0pth 30107 1pthdlem2 30118 eupth2lemb 30219 disjpreima 32566 imadifxp 32583 2ndimaxp 32630 mptiffisupp 32678 swrdrndisj 32945 gsumpart 33044 esplyfval2 33605 zarclsint 33906 dstrvprob 34506 opelco3 35840 funpartlem 36007 poimirlem1 37681 poimirlem2 37682 poimirlem3 37683 poimirlem4 37684 poimirlem5 37685 poimirlem6 37686 poimirlem7 37687 poimirlem10 37690 poimirlem11 37691 poimirlem12 37692 poimirlem13 37693 poimirlem16 37696 poimirlem17 37697 poimirlem19 37699 poimirlem20 37700 poimirlem22 37702 poimirlem23 37703 poimirlem24 37704 poimirlem25 37705 poimirlem28 37708 poimirlem29 37709 poimirlem31 37711 he0 43901 smfresal 46910 predisj 48935 |
| Copyright terms: Public domain | W3C validator |