| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version | ||
| Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| ima0 | ⊢ (𝐴 “ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5667 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
| 2 | res0 5970 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
| 3 | 2 | rneqi 5917 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
| 4 | rn0 5905 | . 2 ⊢ ran ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2762 | 1 ⊢ (𝐴 “ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: csbima12 6066 relimasn 6072 elimasni 6078 inisegn0 6085 predprc 6327 dffv3 6872 suppco 8205 supp0cosupp0 8207 ecexr 8724 fodomfi 9322 imafiOLD 9326 domunfican 9333 fodomfiOLD 9342 efgrelexlema 19730 dprdsn 20019 cnindis 23230 cnhaus 23292 cmpfi 23346 xkouni 23537 xkoccn 23557 mbfima 25583 ismbf2d 25593 limcnlp 25831 mdeg0 26027 pserulm 26383 old0 27819 made0 27837 negs0s 27984 negs1s 27985 spthispth 29706 dfpth2 29711 pthdlem2 29750 0pth 30106 1pthdlem2 30117 eupth2lemb 30218 disjpreima 32565 imadifxp 32582 2ndimaxp 32624 mptiffisupp 32670 swrdrndisj 32933 gsumpart 33051 zarclsint 33903 dstrvprob 34504 opelco3 35792 funpartlem 35960 poimirlem1 37645 poimirlem2 37646 poimirlem3 37647 poimirlem4 37648 poimirlem5 37649 poimirlem6 37650 poimirlem7 37651 poimirlem10 37654 poimirlem11 37655 poimirlem12 37656 poimirlem13 37657 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 poimirlem22 37666 poimirlem23 37667 poimirlem24 37668 poimirlem25 37669 poimirlem28 37672 poimirlem29 37673 poimirlem31 37675 he0 43808 smfresal 46817 predisj 48789 |
| Copyright terms: Public domain | W3C validator |