| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version | ||
| Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| ima0 | ⊢ (𝐴 “ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5654 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
| 2 | res0 5957 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
| 3 | 2 | rneqi 5904 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
| 4 | rn0 5892 | . 2 ⊢ ran ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2757 | 1 ⊢ (𝐴 “ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4299 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: csbima12 6053 relimasn 6059 elimasni 6065 inisegn0 6072 predprc 6314 dffv3 6857 suppco 8188 supp0cosupp0 8190 ecexr 8679 fodomfi 9268 imafiOLD 9272 domunfican 9279 fodomfiOLD 9288 efgrelexlema 19686 dprdsn 19975 cnindis 23186 cnhaus 23248 cmpfi 23302 xkouni 23493 xkoccn 23513 mbfima 25538 ismbf2d 25548 limcnlp 25786 mdeg0 25982 pserulm 26338 old0 27774 made0 27792 negs0s 27939 negs1s 27940 spthispth 29661 dfpth2 29666 pthdlem2 29705 0pth 30061 1pthdlem2 30072 eupth2lemb 30173 disjpreima 32520 imadifxp 32537 2ndimaxp 32577 mptiffisupp 32623 swrdrndisj 32886 gsumpart 33004 zarclsint 33869 dstrvprob 34470 opelco3 35769 funpartlem 35937 poimirlem1 37622 poimirlem2 37623 poimirlem3 37624 poimirlem4 37625 poimirlem5 37626 poimirlem6 37627 poimirlem7 37628 poimirlem10 37631 poimirlem11 37632 poimirlem12 37633 poimirlem13 37634 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem22 37643 poimirlem23 37644 poimirlem24 37645 poimirlem25 37646 poimirlem28 37649 poimirlem29 37650 poimirlem31 37652 he0 43780 smfresal 46793 predisj 48803 |
| Copyright terms: Public domain | W3C validator |