Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version |
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
ima0 | ⊢ (𝐴 “ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5593 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
2 | res0 5884 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
3 | 2 | rneqi 5835 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
4 | rn0 5824 | . 2 ⊢ ran ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2770 | 1 ⊢ (𝐴 “ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 ran crn 5581 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: csbima12 5976 relimasn 5981 elimasni 5988 inisegn0 5995 dffv3 6752 suppco 7993 supp0cosupp0 7995 ecexr 8461 imafi 8920 domunfican 9017 fodomfi 9022 efgrelexlema 19270 dprdsn 19554 cnindis 22351 cnhaus 22413 cmpfi 22467 xkouni 22658 xkoccn 22678 mbfima 24699 ismbf2d 24709 limcnlp 24947 mdeg0 25140 pserulm 25486 spthispth 27995 pthdlem2 28037 0pth 28390 1pthdlem2 28401 eupth2lemb 28502 disjpreima 30824 imadifxp 30841 2ndimaxp 30885 swrdrndisj 31131 gsumpart 31217 zarclsint 31724 dstrvprob 32338 opelco3 33655 old0 33970 made0 33984 negs0s 34051 funpartlem 34171 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem13 35717 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 poimirlem23 35727 poimirlem24 35728 poimirlem25 35729 poimirlem28 35732 poimirlem29 35733 poimirlem31 35735 he0 41281 smfresal 44209 predisj 46044 |
Copyright terms: Public domain | W3C validator |