MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ima0 Structured version   Visualization version   GIF version

Theorem ima0 5974
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
ima0 (𝐴 “ ∅) = ∅

Proof of Theorem ima0
StepHypRef Expression
1 df-ima 5593 . 2 (𝐴 “ ∅) = ran (𝐴 ↾ ∅)
2 res0 5884 . . 3 (𝐴 ↾ ∅) = ∅
32rneqi 5835 . 2 ran (𝐴 ↾ ∅) = ran ∅
4 rn0 5824 . 2 ran ∅ = ∅
51, 3, 43eqtri 2770 1 (𝐴 “ ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4253  ran crn 5581  cres 5582  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  csbima12  5976  relimasn  5981  elimasni  5988  inisegn0  5995  dffv3  6752  suppco  7993  supp0cosupp0  7995  ecexr  8461  imafi  8920  domunfican  9017  fodomfi  9022  efgrelexlema  19270  dprdsn  19554  cnindis  22351  cnhaus  22413  cmpfi  22467  xkouni  22658  xkoccn  22678  mbfima  24699  ismbf2d  24709  limcnlp  24947  mdeg0  25140  pserulm  25486  spthispth  27995  pthdlem2  28037  0pth  28390  1pthdlem2  28401  eupth2lemb  28502  disjpreima  30824  imadifxp  30841  2ndimaxp  30885  swrdrndisj  31131  gsumpart  31217  zarclsint  31724  dstrvprob  32338  opelco3  33655  old0  33970  made0  33984  negs0s  34051  funpartlem  34171  poimirlem1  35705  poimirlem2  35706  poimirlem3  35707  poimirlem4  35708  poimirlem5  35709  poimirlem6  35710  poimirlem7  35711  poimirlem10  35714  poimirlem11  35715  poimirlem12  35716  poimirlem13  35717  poimirlem16  35720  poimirlem17  35721  poimirlem19  35723  poimirlem20  35724  poimirlem22  35726  poimirlem23  35727  poimirlem24  35728  poimirlem25  35729  poimirlem28  35732  poimirlem29  35733  poimirlem31  35735  he0  41281  smfresal  44209  predisj  46044
  Copyright terms: Public domain W3C validator