| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version | ||
| Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| ima0 | ⊢ (𝐴 “ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5698 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
| 2 | res0 6001 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
| 3 | 2 | rneqi 5948 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
| 4 | rn0 5936 | . 2 ⊢ ran ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2769 | 1 ⊢ (𝐴 “ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4333 ran crn 5686 ↾ cres 5687 “ cima 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 |
| This theorem is referenced by: csbima12 6097 relimasn 6103 elimasni 6109 inisegn0 6116 predprc 6359 dffv3 6902 suppco 8231 supp0cosupp0 8233 ecexr 8750 fodomfi 9350 imafiOLD 9354 domunfican 9361 fodomfiOLD 9370 efgrelexlema 19767 dprdsn 20056 cnindis 23300 cnhaus 23362 cmpfi 23416 xkouni 23607 xkoccn 23627 mbfima 25665 ismbf2d 25675 limcnlp 25913 mdeg0 26109 pserulm 26465 old0 27898 made0 27912 negs0s 28058 negs1s 28059 spthispth 29744 dfpth2 29749 pthdlem2 29788 0pth 30144 1pthdlem2 30155 eupth2lemb 30256 disjpreima 32597 imadifxp 32614 2ndimaxp 32656 mptiffisupp 32702 swrdrndisj 32942 gsumpart 33060 zarclsint 33871 dstrvprob 34474 opelco3 35775 funpartlem 35943 poimirlem1 37628 poimirlem2 37629 poimirlem3 37630 poimirlem4 37631 poimirlem5 37632 poimirlem6 37633 poimirlem7 37634 poimirlem10 37637 poimirlem11 37638 poimirlem12 37639 poimirlem13 37640 poimirlem16 37643 poimirlem17 37644 poimirlem19 37646 poimirlem20 37647 poimirlem22 37649 poimirlem23 37650 poimirlem24 37651 poimirlem25 37652 poimirlem28 37655 poimirlem29 37656 poimirlem31 37658 he0 43797 smfresal 46803 predisj 48730 |
| Copyright terms: Public domain | W3C validator |