![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version |
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
ima0 | ⊢ (𝐴 “ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5702 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
2 | res0 6004 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
3 | 2 | rneqi 5951 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
4 | rn0 5939 | . 2 ⊢ ran ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2767 | 1 ⊢ (𝐴 “ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4339 ran crn 5690 ↾ cres 5691 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: csbima12 6099 relimasn 6105 elimasni 6112 inisegn0 6119 predprc 6361 dffv3 6903 suppco 8230 supp0cosupp0 8232 ecexr 8749 fodomfi 9348 imafiOLD 9352 domunfican 9359 fodomfiOLD 9368 efgrelexlema 19782 dprdsn 20071 cnindis 23316 cnhaus 23378 cmpfi 23432 xkouni 23623 xkoccn 23643 mbfima 25679 ismbf2d 25689 limcnlp 25928 mdeg0 26124 pserulm 26480 old0 27913 made0 27927 negs0s 28073 negs1s 28074 spthispth 29759 pthdlem2 29801 0pth 30154 1pthdlem2 30165 eupth2lemb 30266 disjpreima 32604 imadifxp 32621 2ndimaxp 32663 mptiffisupp 32708 swrdrndisj 32927 gsumpart 33043 zarclsint 33833 dstrvprob 34453 opelco3 35756 funpartlem 35924 poimirlem1 37608 poimirlem2 37609 poimirlem3 37610 poimirlem4 37611 poimirlem5 37612 poimirlem6 37613 poimirlem7 37614 poimirlem10 37617 poimirlem11 37618 poimirlem12 37619 poimirlem13 37620 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem22 37629 poimirlem23 37630 poimirlem24 37631 poimirlem25 37632 poimirlem28 37635 poimirlem29 37636 poimirlem31 37638 he0 43774 smfresal 46744 predisj 48659 |
Copyright terms: Public domain | W3C validator |