| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version | ||
| Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| ima0 | ⊢ (𝐴 “ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5636 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
| 2 | res0 5938 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
| 3 | 2 | rneqi 5883 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
| 4 | rn0 5872 | . 2 ⊢ ran ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ (𝐴 “ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 ran crn 5624 ↾ cres 5625 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: csbima12 6034 relimasn 6040 elimasni 6046 inisegn0 6053 predprc 6290 dffv3 6822 suppco 8146 supp0cosupp0 8148 ecexr 8637 fodomfi 9219 imafiOLD 9223 domunfican 9230 fodomfiOLD 9239 efgrelexlema 19646 dprdsn 19935 cnindis 23195 cnhaus 23257 cmpfi 23311 xkouni 23502 xkoccn 23522 mbfima 25547 ismbf2d 25557 limcnlp 25795 mdeg0 25991 pserulm 26347 old0 27787 made0 27805 negs0s 27955 negs1s 27956 spthispth 29687 dfpth2 29692 pthdlem2 29731 0pth 30087 1pthdlem2 30098 eupth2lemb 30199 disjpreima 32546 imadifxp 32563 2ndimaxp 32603 mptiffisupp 32649 swrdrndisj 32912 gsumpart 33023 zarclsint 33838 dstrvprob 34439 opelco3 35747 funpartlem 35915 poimirlem1 37600 poimirlem2 37601 poimirlem3 37602 poimirlem4 37603 poimirlem5 37604 poimirlem6 37605 poimirlem7 37606 poimirlem10 37609 poimirlem11 37610 poimirlem12 37611 poimirlem13 37612 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 poimirlem22 37621 poimirlem23 37622 poimirlem24 37623 poimirlem25 37624 poimirlem28 37627 poimirlem29 37628 poimirlem31 37630 he0 43757 smfresal 46770 predisj 48796 |
| Copyright terms: Public domain | W3C validator |