| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version | ||
| Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| ima0 | ⊢ (𝐴 “ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
| 2 | res0 5954 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
| 3 | 2 | rneqi 5901 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
| 4 | rn0 5889 | . 2 ⊢ ran ∅ = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ (𝐴 “ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: csbima12 6050 relimasn 6056 elimasni 6062 inisegn0 6069 predprc 6311 dffv3 6854 suppco 8185 supp0cosupp0 8187 ecexr 8676 fodomfi 9261 imafiOLD 9265 domunfican 9272 fodomfiOLD 9281 efgrelexlema 19679 dprdsn 19968 cnindis 23179 cnhaus 23241 cmpfi 23295 xkouni 23486 xkoccn 23506 mbfima 25531 ismbf2d 25541 limcnlp 25779 mdeg0 25975 pserulm 26331 old0 27767 made0 27785 negs0s 27932 negs1s 27933 spthispth 29654 dfpth2 29659 pthdlem2 29698 0pth 30054 1pthdlem2 30065 eupth2lemb 30166 disjpreima 32513 imadifxp 32530 2ndimaxp 32570 mptiffisupp 32616 swrdrndisj 32879 gsumpart 32997 zarclsint 33862 dstrvprob 34463 opelco3 35762 funpartlem 35930 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem5 37619 poimirlem6 37620 poimirlem7 37621 poimirlem10 37624 poimirlem11 37625 poimirlem12 37626 poimirlem13 37627 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem22 37636 poimirlem23 37637 poimirlem24 37638 poimirlem25 37639 poimirlem28 37642 poimirlem29 37643 poimirlem31 37645 he0 43773 smfresal 46786 predisj 48799 |
| Copyright terms: Public domain | W3C validator |