![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version |
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
ima0 | ⊢ (𝐴 “ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5713 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
2 | res0 6013 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
3 | 2 | rneqi 5962 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
4 | rn0 5950 | . 2 ⊢ ran ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ (𝐴 “ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4352 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: csbima12 6108 relimasn 6114 elimasni 6121 inisegn0 6128 predprc 6370 dffv3 6916 suppco 8247 supp0cosupp0 8249 ecexr 8768 fodomfi 9378 imafiOLD 9382 domunfican 9389 fodomfiOLD 9398 efgrelexlema 19791 dprdsn 20080 cnindis 23321 cnhaus 23383 cmpfi 23437 xkouni 23628 xkoccn 23648 mbfima 25684 ismbf2d 25694 limcnlp 25933 mdeg0 26129 pserulm 26483 old0 27916 made0 27930 negs0s 28076 negs1s 28077 spthispth 29762 pthdlem2 29804 0pth 30157 1pthdlem2 30168 eupth2lemb 30269 disjpreima 32606 imadifxp 32623 2ndimaxp 32665 mptiffisupp 32705 swrdrndisj 32924 gsumpart 33038 zarclsint 33818 dstrvprob 34436 opelco3 35738 funpartlem 35906 poimirlem1 37581 poimirlem2 37582 poimirlem3 37583 poimirlem4 37584 poimirlem5 37585 poimirlem6 37586 poimirlem7 37587 poimirlem10 37590 poimirlem11 37591 poimirlem12 37592 poimirlem13 37593 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem22 37602 poimirlem23 37603 poimirlem24 37604 poimirlem25 37605 poimirlem28 37608 poimirlem29 37609 poimirlem31 37611 he0 43746 smfresal 46709 predisj 48542 |
Copyright terms: Public domain | W3C validator |