![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ima0 | Structured version Visualization version GIF version |
Description: Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
ima0 | ⊢ (𝐴 “ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5679 | . 2 ⊢ (𝐴 “ ∅) = ran (𝐴 ↾ ∅) | |
2 | res0 5975 | . . 3 ⊢ (𝐴 ↾ ∅) = ∅ | |
3 | 2 | rneqi 5926 | . 2 ⊢ ran (𝐴 ↾ ∅) = ran ∅ |
4 | rn0 5915 | . 2 ⊢ ran ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ (𝐴 “ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∅c0 4314 ran crn 5667 ↾ cres 5668 “ cima 5669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 |
This theorem is referenced by: csbima12 6068 relimasn 6073 elimasni 6080 inisegn0 6087 predprc 6329 dffv3 6877 suppco 8186 supp0cosupp0 8188 ecexr 8704 imafi 9171 domunfican 9316 fodomfi 9321 efgrelexlema 19659 dprdsn 19948 cnindis 23118 cnhaus 23180 cmpfi 23234 xkouni 23425 xkoccn 23445 mbfima 25481 ismbf2d 25491 limcnlp 25729 mdeg0 25928 pserulm 26275 old0 27702 made0 27716 negs0s 27855 spthispth 29452 pthdlem2 29494 0pth 29847 1pthdlem2 29858 eupth2lemb 29959 disjpreima 32284 imadifxp 32301 2ndimaxp 32341 mptiffisupp 32384 swrdrndisj 32588 gsumpart 32675 zarclsint 33341 dstrvprob 33959 opelco3 35241 funpartlem 35409 poimirlem1 36979 poimirlem2 36980 poimirlem3 36981 poimirlem4 36982 poimirlem5 36983 poimirlem6 36984 poimirlem7 36985 poimirlem10 36988 poimirlem11 36989 poimirlem12 36990 poimirlem13 36991 poimirlem16 36994 poimirlem17 36995 poimirlem19 36997 poimirlem20 36998 poimirlem22 37000 poimirlem23 37001 poimirlem24 37002 poimirlem25 37003 poimirlem28 37006 poimirlem29 37007 poimirlem31 37009 he0 43024 smfresal 45989 predisj 47683 |
Copyright terms: Public domain | W3C validator |