| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch1 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.) |
| Ref | Expression |
|---|---|
| hlsuprexch.b | ⊢ 𝐵 = (Base‘𝐾) |
| hlsuprexch.l | ⊢ ≤ = (le‘𝐾) |
| hlsuprexch.j | ⊢ ∨ = (join‘𝐾) |
| hlsuprexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlexch1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39478 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | hlsuprexch.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | hlsuprexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | hlsuprexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 5 | hlsuprexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 2, 3, 4, 5 | cvlexch1 39447 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
| 7 | 1, 6 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 joincjn 18219 Atomscatm 39382 CvLatclc 39384 HLchlt 39469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-cvlat 39441 df-hlat 39470 |
| This theorem is referenced by: cvratlem 39540 4noncolr3 39572 3dimlem4a 39582 3dimlem4OLDN 39584 ps-2 39597 4atlem0a 39712 |
| Copyright terms: Public domain | W3C validator |