![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch1 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.) |
Ref | Expression |
---|---|
hlsuprexch.b | ⊢ 𝐵 = (Base‘𝐾) |
hlsuprexch.l | ⊢ ≤ = (le‘𝐾) |
hlsuprexch.j | ⊢ ∨ = (join‘𝐾) |
hlsuprexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlexch1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 35372 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlsuprexch.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | hlsuprexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | hlsuprexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | hlsuprexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 2, 3, 4, 5 | cvlexch1 35341 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
7 | 1, 6 | syl3an1 1203 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 class class class wbr 4841 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 lecple 16271 joincjn 17256 Atomscatm 35276 CvLatclc 35278 HLchlt 35363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-iota 6062 df-fv 6107 df-ov 6879 df-cvlat 35335 df-hlat 35364 |
This theorem is referenced by: cvratlem 35434 4noncolr3 35466 3dimlem4a 35476 3dimlem4OLDN 35478 ps-2 35491 4atlem0a 35606 |
Copyright terms: Public domain | W3C validator |