Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlexch1 Structured version   Visualization version   GIF version

Theorem hlexch1 39385
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.)
Hypotheses
Ref Expression
hlsuprexch.b 𝐵 = (Base‘𝐾)
hlsuprexch.l = (le‘𝐾)
hlsuprexch.j = (join‘𝐾)
hlsuprexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlexch1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))

Proof of Theorem hlexch1
StepHypRef Expression
1 hlcvl 39361 . 2 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
2 hlsuprexch.b . . 3 𝐵 = (Base‘𝐾)
3 hlsuprexch.l . . 3 = (le‘𝐾)
4 hlsuprexch.j . . 3 = (join‘𝐾)
5 hlsuprexch.a . . 3 𝐴 = (Atoms‘𝐾)
62, 3, 4, 5cvlexch1 39330 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
71, 6syl3an1 1163 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  lecple 17305  joincjn 18358  Atomscatm 39265  CvLatclc 39267  HLchlt 39352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435  df-cvlat 39324  df-hlat 39353
This theorem is referenced by:  cvratlem  39424  4noncolr3  39456  3dimlem4a  39466  3dimlem4OLDN  39468  ps-2  39481  4atlem0a  39596
  Copyright terms: Public domain W3C validator