![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch1 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 13-Nov-2011.) |
Ref | Expression |
---|---|
hlsuprexch.b | β’ π΅ = (BaseβπΎ) |
hlsuprexch.l | β’ β€ = (leβπΎ) |
hlsuprexch.j | β’ β¨ = (joinβπΎ) |
hlsuprexch.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlexch1 | β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 38532 | . 2 β’ (πΎ β HL β πΎ β CvLat) | |
2 | hlsuprexch.b | . . 3 β’ π΅ = (BaseβπΎ) | |
3 | hlsuprexch.l | . . 3 β’ β€ = (leβπΎ) | |
4 | hlsuprexch.j | . . 3 β’ β¨ = (joinβπΎ) | |
5 | hlsuprexch.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
6 | 2, 3, 4, 5 | cvlexch1 38501 | . 2 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
7 | 1, 6 | syl3an1 1163 | 1 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 Atomscatm 38436 CvLatclc 38438 HLchlt 38523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7414 df-cvlat 38495 df-hlat 38524 |
This theorem is referenced by: cvratlem 38595 4noncolr3 38627 3dimlem4a 38637 3dimlem4OLDN 38639 ps-2 38652 4atlem0a 38767 |
Copyright terms: Public domain | W3C validator |