Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch2 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
Ref | Expression |
---|---|
hlsuprexch.b | ⊢ 𝐵 = (Base‘𝐾) |
hlsuprexch.l | ⊢ ≤ = (le‘𝐾) |
hlsuprexch.j | ⊢ ∨ = (join‘𝐾) |
hlsuprexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlexch2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 37028 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlsuprexch.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | hlsuprexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | hlsuprexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | hlsuprexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 2, 3, 4, 5 | cvlexch2 36998 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) |
7 | 1, 6 | syl3an1 1164 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 class class class wbr 5040 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 lecple 16687 joincjn 17682 Atomscatm 36932 CvLatclc 36934 HLchlt 37019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-lub 17712 df-join 17714 df-lat 17784 df-ats 36936 df-atl 36967 df-cvlat 36991 df-hlat 37020 |
This theorem is referenced by: cdlemc3 37862 cdlemg4 38286 cdlemg6c 38289 |
Copyright terms: Public domain | W3C validator |