Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlexch2 Structured version   Visualization version   GIF version

Theorem hlexch2 39503
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
hlsuprexch.b 𝐵 = (Base‘𝐾)
hlsuprexch.l = (le‘𝐾)
hlsuprexch.j = (join‘𝐾)
hlsuprexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlexch2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))

Proof of Theorem hlexch2
StepHypRef Expression
1 hlcvl 39479 . 2 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
2 hlsuprexch.b . . 3 𝐵 = (Base‘𝐾)
3 hlsuprexch.l . . 3 = (le‘𝐾)
4 hlsuprexch.j . . 3 = (join‘𝐾)
5 hlsuprexch.a . . 3 𝐴 = (Atoms‘𝐾)
62, 3, 4, 5cvlexch2 39449 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))
71, 6syl3an1 1163 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) → 𝑄 (𝑃 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  Atomscatm 39383  CvLatclc 39385  HLchlt 39470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-lub 18252  df-join 18254  df-lat 18340  df-ats 39387  df-atl 39418  df-cvlat 39442  df-hlat 39471
This theorem is referenced by:  cdlemc3  40313  cdlemg4  40737  cdlemg6c  40740
  Copyright terms: Public domain W3C validator