Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 36982 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp3d 1145 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2113 CLatccla 17826 OMLcoml 36801 CvLatclc 36891 HLchlt 36976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-un 3846 df-in 3848 df-ss 3858 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-iota 6291 df-fv 6341 df-ov 7167 df-hlat 36977 |
This theorem is referenced by: hlatl 36986 hlexch1 37008 hlexch2 37009 hlexchb1 37010 hlexchb2 37011 hlsupr2 37013 hlexch3 37017 hlexch4N 37018 hlatexchb1 37019 hlatexchb2 37020 hlatexch1 37021 hlatexch2 37022 llnexchb2lem 37494 4atexlemkc 37684 4atex 37702 4atex3 37707 cdleme02N 37848 cdleme0ex2N 37850 cdleme0moN 37851 cdleme0nex 37916 cdleme20zN 37927 cdleme19a 37929 cdleme19d 37932 cdleme21a 37951 cdleme21b 37952 cdleme21c 37953 cdleme21ct 37955 cdleme22f 37972 cdleme22f2 37973 cdleme22g 37974 cdlemf1 38187 |
Copyright terms: Public domain | W3C validator |