| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39401 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 CLatccla 18404 OMLcoml 39220 CvLatclc 39310 HLchlt 39395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-hlat 39396 |
| This theorem is referenced by: hlatl 39405 hlexch1 39427 hlexch2 39428 hlexchb1 39429 hlexchb2 39430 hlsupr2 39432 hlexch3 39436 hlexch4N 39437 hlatexchb1 39438 hlatexchb2 39439 hlatexch1 39440 hlatexch2 39441 llnexchb2lem 39913 4atexlemkc 40103 4atex 40121 4atex3 40126 cdleme02N 40267 cdleme0ex2N 40269 cdleme0moN 40270 cdleme0nex 40335 cdleme20zN 40346 cdleme19a 40348 cdleme19d 40351 cdleme21a 40370 cdleme21b 40371 cdleme21c 40372 cdleme21ct 40374 cdleme22f 40391 cdleme22f2 40392 cdleme22g 40393 cdlemf1 40606 |
| Copyright terms: Public domain | W3C validator |