| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39379 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CLatccla 18513 OMLcoml 39198 CvLatclc 39288 HLchlt 39373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-hlat 39374 |
| This theorem is referenced by: hlatl 39383 hlexch1 39406 hlexch2 39407 hlexchb1 39408 hlexchb2 39409 hlsupr2 39411 hlexch3 39415 hlexch4N 39416 hlatexchb1 39417 hlatexchb2 39418 hlatexch1 39419 hlatexch2 39420 llnexchb2lem 39892 4atexlemkc 40082 4atex 40100 4atex3 40105 cdleme02N 40246 cdleme0ex2N 40248 cdleme0moN 40249 cdleme0nex 40314 cdleme20zN 40325 cdleme19a 40327 cdleme19d 40330 cdleme21a 40349 cdleme21b 40350 cdleme21c 40351 cdleme21ct 40353 cdleme22f 40370 cdleme22f2 40371 cdleme22g 40372 cdlemf1 40585 |
| Copyright terms: Public domain | W3C validator |