Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 37297 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp3d 1142 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CLatccla 18131 OMLcoml 37116 CvLatclc 37206 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-hlat 37292 |
This theorem is referenced by: hlatl 37301 hlexch1 37323 hlexch2 37324 hlexchb1 37325 hlexchb2 37326 hlsupr2 37328 hlexch3 37332 hlexch4N 37333 hlatexchb1 37334 hlatexchb2 37335 hlatexch1 37336 hlatexch2 37337 llnexchb2lem 37809 4atexlemkc 37999 4atex 38017 4atex3 38022 cdleme02N 38163 cdleme0ex2N 38165 cdleme0moN 38166 cdleme0nex 38231 cdleme20zN 38242 cdleme19a 38244 cdleme19d 38247 cdleme21a 38266 cdleme21b 38267 cdleme21c 38268 cdleme21ct 38270 cdleme22f 38287 cdleme22f2 38288 cdleme22g 38289 cdlemf1 38502 |
Copyright terms: Public domain | W3C validator |