| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39349 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CLatccla 18457 OMLcoml 39168 CvLatclc 39258 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-hlat 39344 |
| This theorem is referenced by: hlatl 39353 hlexch1 39376 hlexch2 39377 hlexchb1 39378 hlexchb2 39379 hlsupr2 39381 hlexch3 39385 hlexch4N 39386 hlatexchb1 39387 hlatexchb2 39388 hlatexch1 39389 hlatexch2 39390 llnexchb2lem 39862 4atexlemkc 40052 4atex 40070 4atex3 40075 cdleme02N 40216 cdleme0ex2N 40218 cdleme0moN 40219 cdleme0nex 40284 cdleme20zN 40295 cdleme19a 40297 cdleme19d 40300 cdleme21a 40319 cdleme21b 40320 cdleme21c 40321 cdleme21ct 40323 cdleme22f 40340 cdleme22f2 40341 cdleme22g 40342 cdlemf1 40555 |
| Copyright terms: Public domain | W3C validator |