| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39303 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 CLatccla 18495 OMLcoml 39122 CvLatclc 39212 HLchlt 39297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-iota 6481 df-fv 6536 df-ov 7403 df-hlat 39298 |
| This theorem is referenced by: hlatl 39307 hlexch1 39330 hlexch2 39331 hlexchb1 39332 hlexchb2 39333 hlsupr2 39335 hlexch3 39339 hlexch4N 39340 hlatexchb1 39341 hlatexchb2 39342 hlatexch1 39343 hlatexch2 39344 llnexchb2lem 39816 4atexlemkc 40006 4atex 40024 4atex3 40029 cdleme02N 40170 cdleme0ex2N 40172 cdleme0moN 40173 cdleme0nex 40238 cdleme20zN 40249 cdleme19a 40251 cdleme19d 40254 cdleme21a 40273 cdleme21b 40274 cdleme21c 40275 cdleme21ct 40277 cdleme22f 40294 cdleme22f2 40295 cdleme22g 40296 cdlemf1 40509 |
| Copyright terms: Public domain | W3C validator |