Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlcvl Structured version   Visualization version   GIF version

Theorem hlcvl 37300
Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
hlcvl (𝐾 ∈ HL → 𝐾 ∈ CvLat)

Proof of Theorem hlcvl
StepHypRef Expression
1 hlomcmcv 37297 . 2 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
21simp3d 1142 1 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  CLatccla 18131  OMLcoml 37116  CvLatclc 37206  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-hlat 37292
This theorem is referenced by:  hlatl  37301  hlexch1  37323  hlexch2  37324  hlexchb1  37325  hlexchb2  37326  hlsupr2  37328  hlexch3  37332  hlexch4N  37333  hlatexchb1  37334  hlatexchb2  37335  hlatexch1  37336  hlatexch2  37337  llnexchb2lem  37809  4atexlemkc  37999  4atex  38017  4atex3  38022  cdleme02N  38163  cdleme0ex2N  38165  cdleme0moN  38166  cdleme0nex  38231  cdleme20zN  38242  cdleme19a  38244  cdleme19d  38247  cdleme21a  38266  cdleme21b  38267  cdleme21c  38268  cdleme21ct  38270  cdleme22f  38287  cdleme22f2  38288  cdleme22g  38289  cdlemf1  38502
  Copyright terms: Public domain W3C validator