![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 39312 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CLatccla 18568 OMLcoml 39131 CvLatclc 39221 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-hlat 39307 |
This theorem is referenced by: hlatl 39316 hlexch1 39339 hlexch2 39340 hlexchb1 39341 hlexchb2 39342 hlsupr2 39344 hlexch3 39348 hlexch4N 39349 hlatexchb1 39350 hlatexchb2 39351 hlatexch1 39352 hlatexch2 39353 llnexchb2lem 39825 4atexlemkc 40015 4atex 40033 4atex3 40038 cdleme02N 40179 cdleme0ex2N 40181 cdleme0moN 40182 cdleme0nex 40247 cdleme20zN 40258 cdleme19a 40260 cdleme19d 40263 cdleme21a 40282 cdleme21b 40283 cdleme21c 40284 cdleme21ct 40286 cdleme22f 40303 cdleme22f2 40304 cdleme22g 40305 cdlemf1 40518 |
Copyright terms: Public domain | W3C validator |