| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39337 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CLatccla 18422 OMLcoml 39156 CvLatclc 39246 HLchlt 39331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-hlat 39332 |
| This theorem is referenced by: hlatl 39341 hlexch1 39364 hlexch2 39365 hlexchb1 39366 hlexchb2 39367 hlsupr2 39369 hlexch3 39373 hlexch4N 39374 hlatexchb1 39375 hlatexchb2 39376 hlatexch1 39377 hlatexch2 39378 llnexchb2lem 39850 4atexlemkc 40040 4atex 40058 4atex3 40063 cdleme02N 40204 cdleme0ex2N 40206 cdleme0moN 40207 cdleme0nex 40272 cdleme20zN 40283 cdleme19a 40285 cdleme19d 40288 cdleme21a 40307 cdleme21b 40308 cdleme21c 40309 cdleme21ct 40311 cdleme22f 40328 cdleme22f2 40329 cdleme22g 40330 cdlemf1 40543 |
| Copyright terms: Public domain | W3C validator |