Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 37370 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp3d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 CLatccla 18216 OMLcoml 37189 CvLatclc 37279 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-hlat 37365 |
This theorem is referenced by: hlatl 37374 hlexch1 37396 hlexch2 37397 hlexchb1 37398 hlexchb2 37399 hlsupr2 37401 hlexch3 37405 hlexch4N 37406 hlatexchb1 37407 hlatexchb2 37408 hlatexch1 37409 hlatexch2 37410 llnexchb2lem 37882 4atexlemkc 38072 4atex 38090 4atex3 38095 cdleme02N 38236 cdleme0ex2N 38238 cdleme0moN 38239 cdleme0nex 38304 cdleme20zN 38315 cdleme19a 38317 cdleme19d 38320 cdleme21a 38339 cdleme21b 38340 cdleme21c 38341 cdleme21ct 38343 cdleme22f 38360 cdleme22f2 38361 cdleme22g 38362 cdlemf1 38575 |
Copyright terms: Public domain | W3C validator |