| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39528 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 CLatccla 18412 OMLcoml 39347 CvLatclc 39437 HLchlt 39522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-hlat 39523 |
| This theorem is referenced by: hlatl 39532 hlexch1 39554 hlexch2 39555 hlexchb1 39556 hlexchb2 39557 hlsupr2 39559 hlexch3 39563 hlexch4N 39564 hlatexchb1 39565 hlatexchb2 39566 hlatexch1 39567 hlatexch2 39568 llnexchb2lem 40040 4atexlemkc 40230 4atex 40248 4atex3 40253 cdleme02N 40394 cdleme0ex2N 40396 cdleme0moN 40397 cdleme0nex 40462 cdleme20zN 40473 cdleme19a 40475 cdleme19d 40478 cdleme21a 40497 cdleme21b 40498 cdleme21c 40499 cdleme21ct 40501 cdleme22f 40518 cdleme22f2 40519 cdleme22g 40520 cdlemf1 40733 |
| Copyright terms: Public domain | W3C validator |