| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlomcmcv 39356 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
| 2 | 1 | simp3d 1144 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CLatccla 18464 OMLcoml 39175 CvLatclc 39265 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-hlat 39351 |
| This theorem is referenced by: hlatl 39360 hlexch1 39383 hlexch2 39384 hlexchb1 39385 hlexchb2 39386 hlsupr2 39388 hlexch3 39392 hlexch4N 39393 hlatexchb1 39394 hlatexchb2 39395 hlatexch1 39396 hlatexch2 39397 llnexchb2lem 39869 4atexlemkc 40059 4atex 40077 4atex3 40082 cdleme02N 40223 cdleme0ex2N 40225 cdleme0moN 40226 cdleme0nex 40291 cdleme20zN 40302 cdleme19a 40304 cdleme19d 40307 cdleme21a 40326 cdleme21b 40327 cdleme21c 40328 cdleme21ct 40330 cdleme22f 40347 cdleme22f2 40348 cdleme22g 40349 cdlemf1 40562 |
| Copyright terms: Public domain | W3C validator |