![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlcvl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is an atomic lattice with the covering property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlcvl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlomcmcv 39338 | . 2 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) | |
2 | 1 | simp3d 1143 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 CLatccla 18556 OMLcoml 39157 CvLatclc 39247 HLchlt 39332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-hlat 39333 |
This theorem is referenced by: hlatl 39342 hlexch1 39365 hlexch2 39366 hlexchb1 39367 hlexchb2 39368 hlsupr2 39370 hlexch3 39374 hlexch4N 39375 hlatexchb1 39376 hlatexchb2 39377 hlatexch1 39378 hlatexch2 39379 llnexchb2lem 39851 4atexlemkc 40041 4atex 40059 4atex3 40064 cdleme02N 40205 cdleme0ex2N 40207 cdleme0moN 40208 cdleme0nex 40273 cdleme20zN 40284 cdleme19a 40286 cdleme19d 40289 cdleme21a 40308 cdleme21b 40309 cdleme21c 40310 cdleme21ct 40312 cdleme22f 40329 cdleme22f2 40330 cdleme22g 40331 cdlemf1 40544 |
Copyright terms: Public domain | W3C validator |