Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsuprexch Structured version   Visualization version   GIF version

Theorem hlsuprexch 37395
Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.)
Hypotheses
Ref Expression
hlsuprexch.b 𝐵 = (Base‘𝐾)
hlsuprexch.l = (le‘𝐾)
hlsuprexch.j = (join‘𝐾)
hlsuprexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsuprexch ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑃   𝑧,𝑄
Allowed substitution hints:   (𝑧)   (𝑧)

Proof of Theorem hlsuprexch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlsuprexch.b . . . . 5 𝐵 = (Base‘𝐾)
2 hlsuprexch.l . . . . 5 = (le‘𝐾)
3 eqid 2738 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
4 hlsuprexch.j . . . . 5 = (join‘𝐾)
5 eqid 2738 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
6 eqid 2738 . . . . 5 (1.‘𝐾) = (1.‘𝐾)
7 hlsuprexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat2 37367 . . . 4 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))))
9 simprl 768 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
108, 9sylbi 216 . . 3 (𝐾 ∈ HL → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
11 neeq1 3006 . . . . . 6 (𝑥 = 𝑃 → (𝑥𝑦𝑃𝑦))
12 neeq2 3007 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧𝑥𝑧𝑃))
13 oveq1 7282 . . . . . . . . 9 (𝑥 = 𝑃 → (𝑥 𝑦) = (𝑃 𝑦))
1413breq2d 5086 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧 (𝑥 𝑦) ↔ 𝑧 (𝑃 𝑦)))
1512, 143anbi13d 1437 . . . . . . 7 (𝑥 = 𝑃 → ((𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ↔ (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))))
1615rexbidv 3226 . . . . . 6 (𝑥 = 𝑃 → (∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))))
1711, 16imbi12d 345 . . . . 5 (𝑥 = 𝑃 → ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)))))
18 breq1 5077 . . . . . . . . 9 (𝑥 = 𝑃 → (𝑥 𝑧𝑃 𝑧))
1918notbid 318 . . . . . . . 8 (𝑥 = 𝑃 → (¬ 𝑥 𝑧 ↔ ¬ 𝑃 𝑧))
20 breq1 5077 . . . . . . . 8 (𝑥 = 𝑃 → (𝑥 (𝑧 𝑦) ↔ 𝑃 (𝑧 𝑦)))
2119, 20anbi12d 631 . . . . . . 7 (𝑥 = 𝑃 → ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) ↔ (¬ 𝑃 𝑧𝑃 (𝑧 𝑦))))
22 oveq2 7283 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧 𝑥) = (𝑧 𝑃))
2322breq2d 5086 . . . . . . 7 (𝑥 = 𝑃 → (𝑦 (𝑧 𝑥) ↔ 𝑦 (𝑧 𝑃)))
2421, 23imbi12d 345 . . . . . 6 (𝑥 = 𝑃 → (((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ↔ ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))))
2524ralbidv 3112 . . . . 5 (𝑥 = 𝑃 → (∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ↔ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))))
2617, 25anbi12d 631 . . . 4 (𝑥 = 𝑃 → (((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ↔ ((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)))))
27 neeq2 3007 . . . . . 6 (𝑦 = 𝑄 → (𝑃𝑦𝑃𝑄))
28 neeq2 3007 . . . . . . . 8 (𝑦 = 𝑄 → (𝑧𝑦𝑧𝑄))
29 oveq2 7283 . . . . . . . . 9 (𝑦 = 𝑄 → (𝑃 𝑦) = (𝑃 𝑄))
3029breq2d 5086 . . . . . . . 8 (𝑦 = 𝑄 → (𝑧 (𝑃 𝑦) ↔ 𝑧 (𝑃 𝑄)))
3128, 303anbi23d 1438 . . . . . . 7 (𝑦 = 𝑄 → ((𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)) ↔ (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))))
3231rexbidv 3226 . . . . . 6 (𝑦 = 𝑄 → (∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))))
3327, 32imbi12d 345 . . . . 5 (𝑦 = 𝑄 → ((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ↔ (𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄)))))
34 oveq2 7283 . . . . . . . . 9 (𝑦 = 𝑄 → (𝑧 𝑦) = (𝑧 𝑄))
3534breq2d 5086 . . . . . . . 8 (𝑦 = 𝑄 → (𝑃 (𝑧 𝑦) ↔ 𝑃 (𝑧 𝑄)))
3635anbi2d 629 . . . . . . 7 (𝑦 = 𝑄 → ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) ↔ (¬ 𝑃 𝑧𝑃 (𝑧 𝑄))))
37 breq1 5077 . . . . . . 7 (𝑦 = 𝑄 → (𝑦 (𝑧 𝑃) ↔ 𝑄 (𝑧 𝑃)))
3836, 37imbi12d 345 . . . . . 6 (𝑦 = 𝑄 → (((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)) ↔ ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
3938ralbidv 3112 . . . . 5 (𝑦 = 𝑄 → (∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)) ↔ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
4033, 39anbi12d 631 . . . 4 (𝑦 = 𝑄 → (((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))) ↔ ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃)))))
4126, 40rspc2v 3570 . . 3 ((𝑃𝐴𝑄𝐴) → (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃)))))
4210, 41mpan9 507 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
43423impb 1114 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  ltcplt 18026  joincjn 18029  0.cp0 18141  1.cp1 18142  CLatccla 18216  OMLcoml 37189  Atomscatm 37277  AtLatcal 37278  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  hlsupr  37400
  Copyright terms: Public domain W3C validator