Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsuprexch Structured version   Visualization version   GIF version

Theorem hlsuprexch 38247
Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.)
Hypotheses
Ref Expression
hlsuprexch.b 𝐡 = (Baseβ€˜πΎ)
hlsuprexch.l ≀ = (leβ€˜πΎ)
hlsuprexch.j ∨ = (joinβ€˜πΎ)
hlsuprexch.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlsuprexch ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ ((𝑃 β‰  𝑄 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄)) β†’ 𝑄 ≀ (𝑧 ∨ 𝑃))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐡   𝑧,𝐾   𝑧,𝑃   𝑧,𝑄
Allowed substitution hints:   ∨ (𝑧)   ≀ (𝑧)

Proof of Theorem hlsuprexch
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlsuprexch.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 hlsuprexch.l . . . . 5 ≀ = (leβ€˜πΎ)
3 eqid 2732 . . . . 5 (ltβ€˜πΎ) = (ltβ€˜πΎ)
4 hlsuprexch.j . . . . 5 ∨ = (joinβ€˜πΎ)
5 eqid 2732 . . . . 5 (0.β€˜πΎ) = (0.β€˜πΎ)
6 eqid 2732 . . . . 5 (1.β€˜πΎ) = (1.β€˜πΎ)
7 hlsuprexch.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
81, 2, 3, 4, 5, 6, 7ishlat2 38218 . . . 4 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ ∧ π‘₯(ltβ€˜πΎ)𝑦) ∧ (𝑦(ltβ€˜πΎ)𝑧 ∧ 𝑧(ltβ€˜πΎ)(1.β€˜πΎ))))))
9 simprl 769 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ ∧ π‘₯(ltβ€˜πΎ)𝑦) ∧ (𝑦(ltβ€˜πΎ)𝑧 ∧ 𝑧(ltβ€˜πΎ)(1.β€˜πΎ))))) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
108, 9sylbi 216 . . 3 (𝐾 ∈ HL β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
11 neeq1 3003 . . . . . 6 (π‘₯ = 𝑃 β†’ (π‘₯ β‰  𝑦 ↔ 𝑃 β‰  𝑦))
12 neeq2 3004 . . . . . . . 8 (π‘₯ = 𝑃 β†’ (𝑧 β‰  π‘₯ ↔ 𝑧 β‰  𝑃))
13 oveq1 7415 . . . . . . . . 9 (π‘₯ = 𝑃 β†’ (π‘₯ ∨ 𝑦) = (𝑃 ∨ 𝑦))
1413breq2d 5160 . . . . . . . 8 (π‘₯ = 𝑃 β†’ (𝑧 ≀ (π‘₯ ∨ 𝑦) ↔ 𝑧 ≀ (𝑃 ∨ 𝑦)))
1512, 143anbi13d 1438 . . . . . . 7 (π‘₯ = 𝑃 β†’ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)) ↔ (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦))))
1615rexbidv 3178 . . . . . 6 (π‘₯ = 𝑃 β†’ (βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)) ↔ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦))))
1711, 16imbi12d 344 . . . . 5 (π‘₯ = 𝑃 β†’ ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ (𝑃 β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦)))))
18 breq1 5151 . . . . . . . . 9 (π‘₯ = 𝑃 β†’ (π‘₯ ≀ 𝑧 ↔ 𝑃 ≀ 𝑧))
1918notbid 317 . . . . . . . 8 (π‘₯ = 𝑃 β†’ (Β¬ π‘₯ ≀ 𝑧 ↔ Β¬ 𝑃 ≀ 𝑧))
20 breq1 5151 . . . . . . . 8 (π‘₯ = 𝑃 β†’ (π‘₯ ≀ (𝑧 ∨ 𝑦) ↔ 𝑃 ≀ (𝑧 ∨ 𝑦)))
2119, 20anbi12d 631 . . . . . . 7 (π‘₯ = 𝑃 β†’ ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) ↔ (Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦))))
22 oveq2 7416 . . . . . . . 8 (π‘₯ = 𝑃 β†’ (𝑧 ∨ π‘₯) = (𝑧 ∨ 𝑃))
2322breq2d 5160 . . . . . . 7 (π‘₯ = 𝑃 β†’ (𝑦 ≀ (𝑧 ∨ π‘₯) ↔ 𝑦 ≀ (𝑧 ∨ 𝑃)))
2421, 23imbi12d 344 . . . . . 6 (π‘₯ = 𝑃 β†’ (((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ↔ ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ 𝑃))))
2524ralbidv 3177 . . . . 5 (π‘₯ = 𝑃 β†’ (βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ↔ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ 𝑃))))
2617, 25anbi12d 631 . . . 4 (π‘₯ = 𝑃 β†’ (((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ↔ ((𝑃 β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ 𝑃)))))
27 neeq2 3004 . . . . . 6 (𝑦 = 𝑄 β†’ (𝑃 β‰  𝑦 ↔ 𝑃 β‰  𝑄))
28 neeq2 3004 . . . . . . . 8 (𝑦 = 𝑄 β†’ (𝑧 β‰  𝑦 ↔ 𝑧 β‰  𝑄))
29 oveq2 7416 . . . . . . . . 9 (𝑦 = 𝑄 β†’ (𝑃 ∨ 𝑦) = (𝑃 ∨ 𝑄))
3029breq2d 5160 . . . . . . . 8 (𝑦 = 𝑄 β†’ (𝑧 ≀ (𝑃 ∨ 𝑦) ↔ 𝑧 ≀ (𝑃 ∨ 𝑄)))
3128, 303anbi23d 1439 . . . . . . 7 (𝑦 = 𝑄 β†’ ((𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦)) ↔ (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄))))
3231rexbidv 3178 . . . . . 6 (𝑦 = 𝑄 β†’ (βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦)) ↔ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄))))
3327, 32imbi12d 344 . . . . 5 (𝑦 = 𝑄 β†’ ((𝑃 β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦))) ↔ (𝑃 β‰  𝑄 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄)))))
34 oveq2 7416 . . . . . . . . 9 (𝑦 = 𝑄 β†’ (𝑧 ∨ 𝑦) = (𝑧 ∨ 𝑄))
3534breq2d 5160 . . . . . . . 8 (𝑦 = 𝑄 β†’ (𝑃 ≀ (𝑧 ∨ 𝑦) ↔ 𝑃 ≀ (𝑧 ∨ 𝑄)))
3635anbi2d 629 . . . . . . 7 (𝑦 = 𝑄 β†’ ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦)) ↔ (Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄))))
37 breq1 5151 . . . . . . 7 (𝑦 = 𝑄 β†’ (𝑦 ≀ (𝑧 ∨ 𝑃) ↔ 𝑄 ≀ (𝑧 ∨ 𝑃)))
3836, 37imbi12d 344 . . . . . 6 (𝑦 = 𝑄 β†’ (((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ 𝑃)) ↔ ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄)) β†’ 𝑄 ≀ (𝑧 ∨ 𝑃))))
3938ralbidv 3177 . . . . 5 (𝑦 = 𝑄 β†’ (βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ 𝑃)) ↔ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄)) β†’ 𝑄 ≀ (𝑧 ∨ 𝑃))))
4033, 39anbi12d 631 . . . 4 (𝑦 = 𝑄 β†’ (((𝑃 β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (𝑃 ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ 𝑃))) ↔ ((𝑃 β‰  𝑄 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄)) β†’ 𝑄 ≀ (𝑧 ∨ 𝑃)))))
4126, 40rspc2v 3622 . . 3 ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) β†’ ((𝑃 β‰  𝑄 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄)) β†’ 𝑄 ≀ (𝑧 ∨ 𝑃)))))
4210, 41mpan9 507 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄)) β†’ 𝑄 ≀ (𝑧 ∨ 𝑃))))
43423impb 1115 1 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ ((𝑃 β‰  𝑄 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  𝑃 ∧ 𝑧 β‰  𝑄 ∧ 𝑧 ≀ (𝑃 ∨ 𝑄))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ 𝑃 ≀ 𝑧 ∧ 𝑃 ≀ (𝑧 ∨ 𝑄)) β†’ 𝑄 ≀ (𝑧 ∨ 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  ltcplt 18260  joincjn 18263  0.cp0 18375  1.cp1 18376  CLatccla 18450  OMLcoml 38040  Atomscatm 38128  AtLatcal 38129  HLchlt 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-cvlat 38187  df-hlat 38216
This theorem is referenced by:  hlsupr  38252
  Copyright terms: Public domain W3C validator