Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsuprexch Structured version   Visualization version   GIF version

Theorem hlsuprexch 39382
Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.)
Hypotheses
Ref Expression
hlsuprexch.b 𝐵 = (Base‘𝐾)
hlsuprexch.l = (le‘𝐾)
hlsuprexch.j = (join‘𝐾)
hlsuprexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsuprexch ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑃   𝑧,𝑄
Allowed substitution hints:   (𝑧)   (𝑧)

Proof of Theorem hlsuprexch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlsuprexch.b . . . . 5 𝐵 = (Base‘𝐾)
2 hlsuprexch.l . . . . 5 = (le‘𝐾)
3 eqid 2730 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
4 hlsuprexch.j . . . . 5 = (join‘𝐾)
5 eqid 2730 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
6 eqid 2730 . . . . 5 (1.‘𝐾) = (1.‘𝐾)
7 hlsuprexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat2 39353 . . . 4 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))))
9 simprl 770 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
108, 9sylbi 217 . . 3 (𝐾 ∈ HL → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
11 neeq1 2988 . . . . . 6 (𝑥 = 𝑃 → (𝑥𝑦𝑃𝑦))
12 neeq2 2989 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧𝑥𝑧𝑃))
13 oveq1 7397 . . . . . . . . 9 (𝑥 = 𝑃 → (𝑥 𝑦) = (𝑃 𝑦))
1413breq2d 5122 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧 (𝑥 𝑦) ↔ 𝑧 (𝑃 𝑦)))
1512, 143anbi13d 1440 . . . . . . 7 (𝑥 = 𝑃 → ((𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ↔ (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))))
1615rexbidv 3158 . . . . . 6 (𝑥 = 𝑃 → (∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))))
1711, 16imbi12d 344 . . . . 5 (𝑥 = 𝑃 → ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)))))
18 breq1 5113 . . . . . . . . 9 (𝑥 = 𝑃 → (𝑥 𝑧𝑃 𝑧))
1918notbid 318 . . . . . . . 8 (𝑥 = 𝑃 → (¬ 𝑥 𝑧 ↔ ¬ 𝑃 𝑧))
20 breq1 5113 . . . . . . . 8 (𝑥 = 𝑃 → (𝑥 (𝑧 𝑦) ↔ 𝑃 (𝑧 𝑦)))
2119, 20anbi12d 632 . . . . . . 7 (𝑥 = 𝑃 → ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) ↔ (¬ 𝑃 𝑧𝑃 (𝑧 𝑦))))
22 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧 𝑥) = (𝑧 𝑃))
2322breq2d 5122 . . . . . . 7 (𝑥 = 𝑃 → (𝑦 (𝑧 𝑥) ↔ 𝑦 (𝑧 𝑃)))
2421, 23imbi12d 344 . . . . . 6 (𝑥 = 𝑃 → (((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ↔ ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))))
2524ralbidv 3157 . . . . 5 (𝑥 = 𝑃 → (∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ↔ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))))
2617, 25anbi12d 632 . . . 4 (𝑥 = 𝑃 → (((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ↔ ((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)))))
27 neeq2 2989 . . . . . 6 (𝑦 = 𝑄 → (𝑃𝑦𝑃𝑄))
28 neeq2 2989 . . . . . . . 8 (𝑦 = 𝑄 → (𝑧𝑦𝑧𝑄))
29 oveq2 7398 . . . . . . . . 9 (𝑦 = 𝑄 → (𝑃 𝑦) = (𝑃 𝑄))
3029breq2d 5122 . . . . . . . 8 (𝑦 = 𝑄 → (𝑧 (𝑃 𝑦) ↔ 𝑧 (𝑃 𝑄)))
3128, 303anbi23d 1441 . . . . . . 7 (𝑦 = 𝑄 → ((𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)) ↔ (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))))
3231rexbidv 3158 . . . . . 6 (𝑦 = 𝑄 → (∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))))
3327, 32imbi12d 344 . . . . 5 (𝑦 = 𝑄 → ((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ↔ (𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄)))))
34 oveq2 7398 . . . . . . . . 9 (𝑦 = 𝑄 → (𝑧 𝑦) = (𝑧 𝑄))
3534breq2d 5122 . . . . . . . 8 (𝑦 = 𝑄 → (𝑃 (𝑧 𝑦) ↔ 𝑃 (𝑧 𝑄)))
3635anbi2d 630 . . . . . . 7 (𝑦 = 𝑄 → ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) ↔ (¬ 𝑃 𝑧𝑃 (𝑧 𝑄))))
37 breq1 5113 . . . . . . 7 (𝑦 = 𝑄 → (𝑦 (𝑧 𝑃) ↔ 𝑄 (𝑧 𝑃)))
3836, 37imbi12d 344 . . . . . 6 (𝑦 = 𝑄 → (((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)) ↔ ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
3938ralbidv 3157 . . . . 5 (𝑦 = 𝑄 → (∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)) ↔ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
4033, 39anbi12d 632 . . . 4 (𝑦 = 𝑄 → (((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))) ↔ ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃)))))
4126, 40rspc2v 3602 . . 3 ((𝑃𝐴𝑄𝐴) → (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃)))))
4210, 41mpan9 506 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
43423impb 1114 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  ltcplt 18276  joincjn 18279  0.cp0 18389  1.cp1 18390  CLatccla 18464  OMLcoml 39175  Atomscatm 39263  AtLatcal 39264  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-cvlat 39322  df-hlat 39351
This theorem is referenced by:  hlsupr  39387
  Copyright terms: Public domain W3C validator