Step | Hyp | Ref
| Expression |
1 | | hlsuprexch.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | hlsuprexch.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | eqid 2738 |
. . . . 5
⊢
(lt‘𝐾) =
(lt‘𝐾) |
4 | | hlsuprexch.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
5 | | eqid 2738 |
. . . . 5
⊢
(0.‘𝐾) =
(0.‘𝐾) |
6 | | eqid 2738 |
. . . . 5
⊢
(1.‘𝐾) =
(1.‘𝐾) |
7 | | hlsuprexch.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 1, 2, 3, 4, 5, 6, 7 | ishlat2 37130 |
. . . 4
⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥 ∧ 𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧 ∧ 𝑧(lt‘𝐾)(1.‘𝐾)))))) |
9 | | simprl 771 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥 ∧ 𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧 ∧ 𝑧(lt‘𝐾)(1.‘𝐾))))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥)))) |
10 | 8, 9 | sylbi 220 |
. . 3
⊢ (𝐾 ∈ HL → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥)))) |
11 | | neeq1 3004 |
. . . . . 6
⊢ (𝑥 = 𝑃 → (𝑥 ≠ 𝑦 ↔ 𝑃 ≠ 𝑦)) |
12 | | neeq2 3005 |
. . . . . . . 8
⊢ (𝑥 = 𝑃 → (𝑧 ≠ 𝑥 ↔ 𝑧 ≠ 𝑃)) |
13 | | oveq1 7238 |
. . . . . . . . 9
⊢ (𝑥 = 𝑃 → (𝑥 ∨ 𝑦) = (𝑃 ∨ 𝑦)) |
14 | 13 | breq2d 5079 |
. . . . . . . 8
⊢ (𝑥 = 𝑃 → (𝑧 ≤ (𝑥 ∨ 𝑦) ↔ 𝑧 ≤ (𝑃 ∨ 𝑦))) |
15 | 12, 14 | 3anbi13d 1440 |
. . . . . . 7
⊢ (𝑥 = 𝑃 → ((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ↔ (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦)))) |
16 | 15 | rexbidv 3224 |
. . . . . 6
⊢ (𝑥 = 𝑃 → (∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ↔ ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦)))) |
17 | 11, 16 | imbi12d 348 |
. . . . 5
⊢ (𝑥 = 𝑃 → ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ↔ (𝑃 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦))))) |
18 | | breq1 5070 |
. . . . . . . . 9
⊢ (𝑥 = 𝑃 → (𝑥 ≤ 𝑧 ↔ 𝑃 ≤ 𝑧)) |
19 | 18 | notbid 321 |
. . . . . . . 8
⊢ (𝑥 = 𝑃 → (¬ 𝑥 ≤ 𝑧 ↔ ¬ 𝑃 ≤ 𝑧)) |
20 | | breq1 5070 |
. . . . . . . 8
⊢ (𝑥 = 𝑃 → (𝑥 ≤ (𝑧 ∨ 𝑦) ↔ 𝑃 ≤ (𝑧 ∨ 𝑦))) |
21 | 19, 20 | anbi12d 634 |
. . . . . . 7
⊢ (𝑥 = 𝑃 → ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) ↔ (¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)))) |
22 | | oveq2 7239 |
. . . . . . . 8
⊢ (𝑥 = 𝑃 → (𝑧 ∨ 𝑥) = (𝑧 ∨ 𝑃)) |
23 | 22 | breq2d 5079 |
. . . . . . 7
⊢ (𝑥 = 𝑃 → (𝑦 ≤ (𝑧 ∨ 𝑥) ↔ 𝑦 ≤ (𝑧 ∨ 𝑃))) |
24 | 21, 23 | imbi12d 348 |
. . . . . 6
⊢ (𝑥 = 𝑃 → (((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥)) ↔ ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑃)))) |
25 | 24 | ralbidv 3119 |
. . . . 5
⊢ (𝑥 = 𝑃 → (∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥)) ↔ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑃)))) |
26 | 17, 25 | anbi12d 634 |
. . . 4
⊢ (𝑥 = 𝑃 → (((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ↔ ((𝑃 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑃))))) |
27 | | neeq2 3005 |
. . . . . 6
⊢ (𝑦 = 𝑄 → (𝑃 ≠ 𝑦 ↔ 𝑃 ≠ 𝑄)) |
28 | | neeq2 3005 |
. . . . . . . 8
⊢ (𝑦 = 𝑄 → (𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑄)) |
29 | | oveq2 7239 |
. . . . . . . . 9
⊢ (𝑦 = 𝑄 → (𝑃 ∨ 𝑦) = (𝑃 ∨ 𝑄)) |
30 | 29 | breq2d 5079 |
. . . . . . . 8
⊢ (𝑦 = 𝑄 → (𝑧 ≤ (𝑃 ∨ 𝑦) ↔ 𝑧 ≤ (𝑃 ∨ 𝑄))) |
31 | 28, 30 | 3anbi23d 1441 |
. . . . . . 7
⊢ (𝑦 = 𝑄 → ((𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦)) ↔ (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄)))) |
32 | 31 | rexbidv 3224 |
. . . . . 6
⊢ (𝑦 = 𝑄 → (∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦)) ↔ ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄)))) |
33 | 27, 32 | imbi12d 348 |
. . . . 5
⊢ (𝑦 = 𝑄 → ((𝑃 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦))) ↔ (𝑃 ≠ 𝑄 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄))))) |
34 | | oveq2 7239 |
. . . . . . . . 9
⊢ (𝑦 = 𝑄 → (𝑧 ∨ 𝑦) = (𝑧 ∨ 𝑄)) |
35 | 34 | breq2d 5079 |
. . . . . . . 8
⊢ (𝑦 = 𝑄 → (𝑃 ≤ (𝑧 ∨ 𝑦) ↔ 𝑃 ≤ (𝑧 ∨ 𝑄))) |
36 | 35 | anbi2d 632 |
. . . . . . 7
⊢ (𝑦 = 𝑄 → ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)) ↔ (¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)))) |
37 | | breq1 5070 |
. . . . . . 7
⊢ (𝑦 = 𝑄 → (𝑦 ≤ (𝑧 ∨ 𝑃) ↔ 𝑄 ≤ (𝑧 ∨ 𝑃))) |
38 | 36, 37 | imbi12d 348 |
. . . . . 6
⊢ (𝑦 = 𝑄 → (((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑃)) ↔ ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃)))) |
39 | 38 | ralbidv 3119 |
. . . . 5
⊢ (𝑦 = 𝑄 → (∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑃)) ↔ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃)))) |
40 | 33, 39 | anbi12d 634 |
. . . 4
⊢ (𝑦 = 𝑄 → (((𝑃 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑃 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑃))) ↔ ((𝑃 ≠ 𝑄 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃))))) |
41 | 26, 40 | rspc2v 3559 |
. . 3
⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) → ((𝑃 ≠ 𝑄 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃))))) |
42 | 10, 41 | mpan9 510 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃)))) |
43 | 42 | 3impb 1117 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ≠ 𝑄 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑃 ∧ 𝑧 ≠ 𝑄 ∧ 𝑧 ≤ (𝑃 ∨ 𝑄))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑃 ≤ 𝑧 ∧ 𝑃 ≤ (𝑧 ∨ 𝑄)) → 𝑄 ≤ (𝑧 ∨ 𝑃)))) |