Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsuprexch Structured version   Visualization version   GIF version

Theorem hlsuprexch 39419
Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.)
Hypotheses
Ref Expression
hlsuprexch.b 𝐵 = (Base‘𝐾)
hlsuprexch.l = (le‘𝐾)
hlsuprexch.j = (join‘𝐾)
hlsuprexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsuprexch ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑃   𝑧,𝑄
Allowed substitution hints:   (𝑧)   (𝑧)

Proof of Theorem hlsuprexch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlsuprexch.b . . . . 5 𝐵 = (Base‘𝐾)
2 hlsuprexch.l . . . . 5 = (le‘𝐾)
3 eqid 2731 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
4 hlsuprexch.j . . . . 5 = (join‘𝐾)
5 eqid 2731 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
6 eqid 2731 . . . . 5 (1.‘𝐾) = (1.‘𝐾)
7 hlsuprexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat2 39391 . . . 4 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))))
9 simprl 770 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
108, 9sylbi 217 . . 3 (𝐾 ∈ HL → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
11 neeq1 2990 . . . . . 6 (𝑥 = 𝑃 → (𝑥𝑦𝑃𝑦))
12 neeq2 2991 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧𝑥𝑧𝑃))
13 oveq1 7353 . . . . . . . . 9 (𝑥 = 𝑃 → (𝑥 𝑦) = (𝑃 𝑦))
1413breq2d 5103 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧 (𝑥 𝑦) ↔ 𝑧 (𝑃 𝑦)))
1512, 143anbi13d 1440 . . . . . . 7 (𝑥 = 𝑃 → ((𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ↔ (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))))
1615rexbidv 3156 . . . . . 6 (𝑥 = 𝑃 → (∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))))
1711, 16imbi12d 344 . . . . 5 (𝑥 = 𝑃 → ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)))))
18 breq1 5094 . . . . . . . . 9 (𝑥 = 𝑃 → (𝑥 𝑧𝑃 𝑧))
1918notbid 318 . . . . . . . 8 (𝑥 = 𝑃 → (¬ 𝑥 𝑧 ↔ ¬ 𝑃 𝑧))
20 breq1 5094 . . . . . . . 8 (𝑥 = 𝑃 → (𝑥 (𝑧 𝑦) ↔ 𝑃 (𝑧 𝑦)))
2119, 20anbi12d 632 . . . . . . 7 (𝑥 = 𝑃 → ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) ↔ (¬ 𝑃 𝑧𝑃 (𝑧 𝑦))))
22 oveq2 7354 . . . . . . . 8 (𝑥 = 𝑃 → (𝑧 𝑥) = (𝑧 𝑃))
2322breq2d 5103 . . . . . . 7 (𝑥 = 𝑃 → (𝑦 (𝑧 𝑥) ↔ 𝑦 (𝑧 𝑃)))
2421, 23imbi12d 344 . . . . . 6 (𝑥 = 𝑃 → (((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ↔ ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))))
2524ralbidv 3155 . . . . 5 (𝑥 = 𝑃 → (∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ↔ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))))
2617, 25anbi12d 632 . . . 4 (𝑥 = 𝑃 → (((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ↔ ((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)))))
27 neeq2 2991 . . . . . 6 (𝑦 = 𝑄 → (𝑃𝑦𝑃𝑄))
28 neeq2 2991 . . . . . . . 8 (𝑦 = 𝑄 → (𝑧𝑦𝑧𝑄))
29 oveq2 7354 . . . . . . . . 9 (𝑦 = 𝑄 → (𝑃 𝑦) = (𝑃 𝑄))
3029breq2d 5103 . . . . . . . 8 (𝑦 = 𝑄 → (𝑧 (𝑃 𝑦) ↔ 𝑧 (𝑃 𝑄)))
3128, 303anbi23d 1441 . . . . . . 7 (𝑦 = 𝑄 → ((𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)) ↔ (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))))
3231rexbidv 3156 . . . . . 6 (𝑦 = 𝑄 → (∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))))
3327, 32imbi12d 344 . . . . 5 (𝑦 = 𝑄 → ((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ↔ (𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄)))))
34 oveq2 7354 . . . . . . . . 9 (𝑦 = 𝑄 → (𝑧 𝑦) = (𝑧 𝑄))
3534breq2d 5103 . . . . . . . 8 (𝑦 = 𝑄 → (𝑃 (𝑧 𝑦) ↔ 𝑃 (𝑧 𝑄)))
3635anbi2d 630 . . . . . . 7 (𝑦 = 𝑄 → ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) ↔ (¬ 𝑃 𝑧𝑃 (𝑧 𝑄))))
37 breq1 5094 . . . . . . 7 (𝑦 = 𝑄 → (𝑦 (𝑧 𝑃) ↔ 𝑄 (𝑧 𝑃)))
3836, 37imbi12d 344 . . . . . 6 (𝑦 = 𝑄 → (((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)) ↔ ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
3938ralbidv 3155 . . . . 5 (𝑦 = 𝑄 → (∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃)) ↔ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
4033, 39anbi12d 632 . . . 4 (𝑦 = 𝑄 → (((𝑃𝑦 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑦𝑧 (𝑃 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑦)) → 𝑦 (𝑧 𝑃))) ↔ ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃)))))
4126, 40rspc2v 3588 . . 3 ((𝑃𝐴𝑄𝐴) → (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃)))))
4210, 41mpan9 506 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
43423impb 1114 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃𝑄 → ∃𝑧𝐴 (𝑧𝑃𝑧𝑄𝑧 (𝑃 𝑄))) ∧ ∀𝑧𝐵 ((¬ 𝑃 𝑧𝑃 (𝑧 𝑄)) → 𝑄 (𝑧 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  ltcplt 18211  joincjn 18214  0.cp0 18324  1.cp1 18325  CLatccla 18401  OMLcoml 39213  Atomscatm 39301  AtLatcal 39302  HLchlt 39388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-cvlat 39360  df-hlat 39389
This theorem is referenced by:  hlsupr  39424
  Copyright terms: Public domain W3C validator