Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrnidres Structured version   Visualization version   GIF version

Theorem br1cossxrnidres 38400
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
Assertion
Ref Expression
br1cossxrnidres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrnidres
StepHypRef Expression
1 br1cossxrnres 38397 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷))))
2 ideq2 38256 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐶𝑢 = 𝐶))
32elv 3493 . . . . 5 (𝑢 I 𝐶𝑢 = 𝐶)
43anbi1i 623 . . . 4 ((𝑢 I 𝐶𝑢𝑅𝐵) ↔ (𝑢 = 𝐶𝑢𝑅𝐵))
5 ideq2 38256 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐸𝑢 = 𝐸))
65elv 3493 . . . . 5 (𝑢 I 𝐸𝑢 = 𝐸)
76anbi1i 623 . . . 4 ((𝑢 I 𝐸𝑢𝑅𝐷) ↔ (𝑢 = 𝐸𝑢𝑅𝐷))
84, 7anbi12i 627 . . 3 (((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
98rexbii 3100 . 2 (∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
101, 9bitrdi 287 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cop 4654   class class class wbr 5166   I cid 5592  cres 5697  cxrn 38127  ccoss 38128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-fo 6574  df-fv 6576  df-1st 8024  df-2nd 8025  df-xrn 38320  df-coss 38360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator