Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrnidres Structured version   Visualization version   GIF version

Theorem br1cossxrnidres 38415
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
Assertion
Ref Expression
br1cossxrnidres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrnidres
StepHypRef Expression
1 br1cossxrnres 38412 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷))))
2 ideq2 38271 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐶𝑢 = 𝐶))
32elv 3464 . . . . 5 (𝑢 I 𝐶𝑢 = 𝐶)
43anbi1i 624 . . . 4 ((𝑢 I 𝐶𝑢𝑅𝐵) ↔ (𝑢 = 𝐶𝑢𝑅𝐵))
5 ideq2 38271 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐸𝑢 = 𝐸))
65elv 3464 . . . . 5 (𝑢 I 𝐸𝑢 = 𝐸)
76anbi1i 624 . . . 4 ((𝑢 I 𝐸𝑢𝑅𝐷) ↔ (𝑢 = 𝐸𝑢𝑅𝐷))
84, 7anbi12i 628 . . 3 (((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
98rexbii 3083 . 2 (∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
101, 9bitrdi 287 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  cop 4607   class class class wbr 5119   I cid 5547  cres 5656  cxrn 38144  ccoss 38145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fo 6536  df-fv 6538  df-1st 7986  df-2nd 7987  df-xrn 38335  df-coss 38375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator