![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrnidres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
Ref | Expression |
---|---|
br1cossxrnidres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 38397 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | ideq2 38256 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐶 ↔ 𝑢 = 𝐶)) | |
3 | 2 | elv 3493 | . . . . 5 ⊢ (𝑢 I 𝐶 ↔ 𝑢 = 𝐶) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐵)) |
5 | ideq2 38256 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐸 ↔ 𝑢 = 𝐸)) | |
6 | 5 | elv 3493 | . . . . 5 ⊢ (𝑢 I 𝐸 ↔ 𝑢 = 𝐸) |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑢 I 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 627 | . . 3 ⊢ (((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3100 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 〈cop 4654 class class class wbr 5166 I cid 5592 ↾ cres 5697 ⋉ cxrn 38127 ≀ ccoss 38128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-fo 6574 df-fv 6576 df-1st 8024 df-2nd 8025 df-xrn 38320 df-coss 38360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |