Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrnidres Structured version   Visualization version   GIF version

Theorem br1cossxrnidres 37955
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
Assertion
Ref Expression
br1cossxrnidres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrnidres
StepHypRef Expression
1 br1cossxrnres 37952 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷))))
2 ideq2 37811 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐶𝑢 = 𝐶))
32elv 3479 . . . . 5 (𝑢 I 𝐶𝑢 = 𝐶)
43anbi1i 622 . . . 4 ((𝑢 I 𝐶𝑢𝑅𝐵) ↔ (𝑢 = 𝐶𝑢𝑅𝐵))
5 ideq2 37811 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐸𝑢 = 𝐸))
65elv 3479 . . . . 5 (𝑢 I 𝐸𝑢 = 𝐸)
76anbi1i 622 . . . 4 ((𝑢 I 𝐸𝑢𝑅𝐷) ↔ (𝑢 = 𝐸𝑢𝑅𝐷))
84, 7anbi12i 626 . . 3 (((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
98rexbii 3091 . 2 (∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
101, 9bitrdi 286 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3067  Vcvv 3473  cop 4638   class class class wbr 5152   I cid 5579  cres 5684  cxrn 37680  ccoss 37681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-1st 7999  df-2nd 8000  df-xrn 37875  df-coss 37915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator