Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrnidres Structured version   Visualization version   GIF version

Theorem br1cossxrnidres 35706
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.)
Assertion
Ref Expression
br1cossxrnidres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrnidres
StepHypRef Expression
1 br1cossxrnres 35703 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷))))
2 ideq2 35580 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐶𝑢 = 𝐶))
32elv 3499 . . . . 5 (𝑢 I 𝐶𝑢 = 𝐶)
43anbi1i 625 . . . 4 ((𝑢 I 𝐶𝑢𝑅𝐵) ↔ (𝑢 = 𝐶𝑢𝑅𝐵))
5 ideq2 35580 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐸𝑢 = 𝐸))
65elv 3499 . . . . 5 (𝑢 I 𝐸𝑢 = 𝐸)
76anbi1i 625 . . . 4 ((𝑢 I 𝐸𝑢𝑅𝐷) ↔ (𝑢 = 𝐸𝑢𝑅𝐷))
84, 7anbi12i 628 . . 3 (((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
98rexbii 3247 . 2 (∃𝑢𝐴 ((𝑢 I 𝐶𝑢𝑅𝐵) ∧ (𝑢 I 𝐸𝑢𝑅𝐷)) ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷)))
101, 9syl6bb 289 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( I ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 = 𝐶𝑢𝑅𝐵) ∧ (𝑢 = 𝐸𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  cop 4573   class class class wbr 5066   I cid 5459  cres 5557  cxrn 35467  ccoss 35468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fo 6361  df-fv 6363  df-1st 7689  df-2nd 7690  df-xrn 35638  df-coss 35674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator