| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrnidres | Structured version Visualization version GIF version | ||
| Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| Ref | Expression |
|---|---|
| br1cossxrnidres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cossxrnres 38449 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐸 ∧ 𝑢𝑅𝐷)))) | |
| 2 | ideq2 38308 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐶 ↔ 𝑢 = 𝐶)) | |
| 3 | 2 | elv 3485 | . . . . 5 ⊢ (𝑢 I 𝐶 ↔ 𝑢 = 𝐶) |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐵)) |
| 5 | ideq2 38308 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐸 ↔ 𝑢 = 𝐸)) | |
| 6 | 5 | elv 3485 | . . . . 5 ⊢ (𝑢 I 𝐸 ↔ 𝑢 = 𝐸) |
| 7 | 6 | anbi1i 624 | . . . 4 ⊢ ((𝑢 I 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)) |
| 8 | 4, 7 | anbi12i 628 | . . 3 ⊢ (((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷))) |
| 9 | 8 | rexbii 3094 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷))) |
| 10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 〈cop 4632 class class class wbr 5143 I cid 5577 ↾ cres 5687 ⋉ cxrn 38181 ≀ ccoss 38182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-1st 8014 df-2nd 8015 df-xrn 38372 df-coss 38412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |