Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossinidres Structured version   Visualization version   GIF version

Theorem br1cossinidres 37622
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossinidres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossinidres
StepHypRef Expression
1 br1cossinres 37620 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶))))
2 ideq2 37479 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐵𝑢 = 𝐵))
32elv 3478 . . . . 5 (𝑢 I 𝐵𝑢 = 𝐵)
43anbi1i 622 . . . 4 ((𝑢 I 𝐵𝑢𝑅𝐵) ↔ (𝑢 = 𝐵𝑢𝑅𝐵))
5 ideq2 37479 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐶𝑢 = 𝐶))
65elv 3478 . . . . 5 (𝑢 I 𝐶𝑢 = 𝐶)
76anbi1i 622 . . . 4 ((𝑢 I 𝐶𝑢𝑅𝐶) ↔ (𝑢 = 𝐶𝑢𝑅𝐶))
84, 7anbi12i 625 . . 3 (((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶)) ↔ ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶)))
98rexbii 3092 . 2 (∃𝑢𝐴 ((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶)) ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶)))
101, 9bitrdi 286 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wrex 3068  Vcvv 3472  cin 3946   class class class wbr 5147   I cid 5572  cres 5677  ccoss 37346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-res 5687  df-coss 37584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator