![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossinidres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
br1cossinidres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossinres 37620 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)))) | |
2 | ideq2 37479 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐵 ↔ 𝑢 = 𝐵)) | |
3 | 2 | elv 3478 | . . . . 5 ⊢ (𝑢 I 𝐵 ↔ 𝑢 = 𝐵) |
4 | 3 | anbi1i 622 | . . . 4 ⊢ ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ↔ (𝑢 = 𝐵 ∧ 𝑢𝑅𝐵)) |
5 | ideq2 37479 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐶 ↔ 𝑢 = 𝐶)) | |
6 | 5 | elv 3478 | . . . . 5 ⊢ (𝑢 I 𝐶 ↔ 𝑢 = 𝐶) |
7 | 6 | anbi1i 622 | . . . 4 ⊢ ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐶) ↔ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)) |
8 | 4, 7 | anbi12i 625 | . . 3 ⊢ (((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
9 | 8 | rexbii 3092 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
10 | 1, 9 | bitrdi 286 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 Vcvv 3472 ∩ cin 3946 class class class wbr 5147 I cid 5572 ↾ cres 5677 ≀ ccoss 37346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-res 5687 df-coss 37584 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |