Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossinidres Structured version   Visualization version   GIF version

Theorem br1cossinidres 38405
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossinidres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossinidres
StepHypRef Expression
1 br1cossinres 38403 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶))))
2 ideq2 38263 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐵𝑢 = 𝐵))
32elv 3493 . . . . 5 (𝑢 I 𝐵𝑢 = 𝐵)
43anbi1i 623 . . . 4 ((𝑢 I 𝐵𝑢𝑅𝐵) ↔ (𝑢 = 𝐵𝑢𝑅𝐵))
5 ideq2 38263 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐶𝑢 = 𝐶))
65elv 3493 . . . . 5 (𝑢 I 𝐶𝑢 = 𝐶)
76anbi1i 623 . . . 4 ((𝑢 I 𝐶𝑢𝑅𝐶) ↔ (𝑢 = 𝐶𝑢𝑅𝐶))
84, 7anbi12i 627 . . 3 (((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶)) ↔ ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶)))
98rexbii 3100 . 2 (∃𝑢𝐴 ((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶)) ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶)))
101, 9bitrdi 287 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cin 3975   class class class wbr 5166   I cid 5592  cres 5702  ccoss 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-res 5712  df-coss 38367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator