Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossinidres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
br1cossinidres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossinres 36565 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)))) | |
2 | ideq2 36443 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐵 ↔ 𝑢 = 𝐵)) | |
3 | 2 | elv 3438 | . . . . 5 ⊢ (𝑢 I 𝐵 ↔ 𝑢 = 𝐵) |
4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ↔ (𝑢 = 𝐵 ∧ 𝑢𝑅𝐵)) |
5 | ideq2 36443 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐶 ↔ 𝑢 = 𝐶)) | |
6 | 5 | elv 3438 | . . . . 5 ⊢ (𝑢 I 𝐶 ↔ 𝑢 = 𝐶) |
7 | 6 | anbi1i 624 | . . . 4 ⊢ ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐶) ↔ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)) |
8 | 4, 7 | anbi12i 627 | . . 3 ⊢ (((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
9 | 8 | rexbii 3181 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 class class class wbr 5074 I cid 5488 ↾ cres 5591 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-res 5601 df-coss 36537 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |