Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossinidres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
br1cossinidres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossinres 36329 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)))) | |
2 | ideq2 36207 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐵 ↔ 𝑢 = 𝐵)) | |
3 | 2 | elv 3427 | . . . . 5 ⊢ (𝑢 I 𝐵 ↔ 𝑢 = 𝐵) |
4 | 3 | anbi1i 627 | . . . 4 ⊢ ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ↔ (𝑢 = 𝐵 ∧ 𝑢𝑅𝐵)) |
5 | ideq2 36207 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐶 ↔ 𝑢 = 𝐶)) | |
6 | 5 | elv 3427 | . . . . 5 ⊢ (𝑢 I 𝐶 ↔ 𝑢 = 𝐶) |
7 | 6 | anbi1i 627 | . . . 4 ⊢ ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐶) ↔ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)) |
8 | 4, 7 | anbi12i 630 | . . 3 ⊢ (((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
9 | 8 | rexbii 3176 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
10 | 1, 9 | bitrdi 290 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ∃wrex 3063 Vcvv 3421 ∩ cin 3880 class class class wbr 5068 I cid 5469 ↾ cres 5568 ≀ ccoss 36097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pr 5337 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3423 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-sn 4557 df-pr 4559 df-op 4563 df-br 5069 df-opab 5131 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-res 5578 df-coss 36301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |