| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5656 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpdom3 9044 marypha1lem 9391 canthp1lem2 10613 axresscn 11108 imasvscafn 17507 imasvscaf 17509 gass 19240 gsum2d 19909 pzriprnglem4 21401 pzriprnglem10 21407 tx2cn 23504 txtube 23534 txcmplem1 23535 hausdiag 23539 xkoinjcn 23581 caussi 25204 dvfval 25805 issh2 31145 elrgspnsubrunlem2 33206 qtophaus 33833 2ndmbfm 34259 sxbrsigalem0 34269 cvmlift2lem9 35305 cvmlift2lem11 35307 filnetlem3 36375 bj-idres 37155 idresssidinxp 38303 trclexi 43616 cnvtrcl0 43622 ovolval5lem2 46658 ovnovollem1 46661 ovnovollem2 46662 |
| Copyright terms: Public domain | W3C validator |