| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3981 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5669 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: xpdom3 9084 marypha1lem 9445 canthp1lem2 10667 axresscn 11162 imasvscafn 17551 imasvscaf 17553 gass 19284 gsum2d 19953 pzriprnglem4 21445 pzriprnglem10 21451 tx2cn 23548 txtube 23578 txcmplem1 23579 hausdiag 23583 xkoinjcn 23625 caussi 25249 dvfval 25850 issh2 31190 elrgspnsubrunlem2 33243 qtophaus 33867 2ndmbfm 34293 sxbrsigalem0 34303 cvmlift2lem9 35333 cvmlift2lem11 35335 filnetlem3 36398 bj-idres 37178 idresssidinxp 38326 trclexi 43644 cnvtrcl0 43650 ovolval5lem2 46682 ovnovollem1 46685 ovnovollem2 46686 |
| Copyright terms: Public domain | W3C validator |