![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5715 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-opab 5229 df-xp 5706 |
This theorem is referenced by: xpdom3 9136 marypha1lem 9502 canthp1lem2 10722 axresscn 11217 imasvscafn 17597 imasvscaf 17599 gass 19341 gsum2d 20014 pzriprnglem4 21518 pzriprnglem10 21524 tx2cn 23639 txtube 23669 txcmplem1 23670 hausdiag 23674 xkoinjcn 23716 caussi 25350 dvfval 25952 issh2 31241 qtophaus 33782 2ndmbfm 34226 sxbrsigalem0 34236 cvmlift2lem9 35279 cvmlift2lem11 35281 filnetlem3 36346 bj-idres 37126 idresssidinxp 38264 trclexi 43582 cnvtrcl0 43588 ovolval5lem2 46574 ovnovollem1 46577 ovnovollem2 46578 |
Copyright terms: Public domain | W3C validator |