Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5595 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 |
This theorem is referenced by: xpdom3 8810 marypha1lem 9122 canthp1lem2 10340 axresscn 10835 imasvscafn 17165 imasvscaf 17167 gass 18822 gsum2d 19488 tx2cn 22669 txtube 22699 txcmplem1 22700 hausdiag 22704 xkoinjcn 22746 caussi 24366 dvfval 24966 issh2 29472 qtophaus 31688 2ndmbfm 32128 sxbrsigalem0 32138 cvmlift2lem9 33173 cvmlift2lem11 33175 filnetlem3 34496 bj-idres 35258 idresssidinxp 36371 trclexi 41117 cnvtrcl0 41123 ovolval5lem2 44081 ovnovollem1 44084 ovnovollem2 44085 |
Copyright terms: Public domain | W3C validator |