![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3997 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5682 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3941 × cxp 5665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 df-ss 3958 df-opab 5202 df-xp 5673 |
This theorem is referenced by: xpdom3 9067 marypha1lem 9425 canthp1lem2 10645 axresscn 11140 imasvscafn 17484 imasvscaf 17486 gass 19209 gsum2d 19884 pzriprnglem4 21341 pzriprnglem10 21347 tx2cn 23438 txtube 23468 txcmplem1 23469 hausdiag 23473 xkoinjcn 23515 caussi 25149 dvfval 25750 issh2 30934 qtophaus 33308 2ndmbfm 33752 sxbrsigalem0 33762 cvmlift2lem9 34793 cvmlift2lem11 34795 filnetlem3 35756 bj-idres 36532 idresssidinxp 37671 trclexi 42885 cnvtrcl0 42891 ovolval5lem2 45879 ovnovollem1 45882 ovnovollem2 45883 |
Copyright terms: Public domain | W3C validator |