Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3899 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5540 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3843 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-in 3850 df-ss 3860 df-opab 5093 df-xp 5531 |
This theorem is referenced by: xpdom3 8664 marypha1lem 8970 canthp1lem2 10153 axresscn 10648 imasvscafn 16913 imasvscaf 16915 gass 18549 gsum2d 19211 tx2cn 22361 txtube 22391 txcmplem1 22392 hausdiag 22396 xkoinjcn 22438 caussi 24049 dvfval 24649 issh2 29144 qtophaus 31358 2ndmbfm 31798 sxbrsigalem0 31808 cvmlift2lem9 32844 cvmlift2lem11 32846 filnetlem3 34207 bj-idres 34952 idresssidinxp 36067 trclexi 40773 cnvtrcl0 40779 ovolval5lem2 43733 ovnovollem1 43736 ovnovollem2 43737 |
Copyright terms: Public domain | W3C validator |