| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5634 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: xpdom3 8995 marypha1lem 9324 canthp1lem2 10551 axresscn 11046 imasvscafn 17443 imasvscaf 17445 gass 19215 gsum2d 19886 pzriprnglem4 21423 pzriprnglem10 21429 tx2cn 23526 txtube 23556 txcmplem1 23557 hausdiag 23561 xkoinjcn 23603 caussi 25225 dvfval 25826 issh2 31191 elrgspnsubrunlem2 33222 qtophaus 33870 2ndmbfm 34295 sxbrsigalem0 34305 cvmlift2lem9 35376 cvmlift2lem11 35378 filnetlem3 36445 bj-idres 37225 idresssidinxp 38367 trclexi 43738 cnvtrcl0 43744 ovolval5lem2 46776 ovnovollem1 46779 ovnovollem2 46780 |
| Copyright terms: Public domain | W3C validator |