![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version |
Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4017 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 5703 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3962 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ss 3979 df-opab 5210 df-xp 5694 |
This theorem is referenced by: xpdom3 9108 marypha1lem 9470 canthp1lem2 10690 axresscn 11185 imasvscafn 17583 imasvscaf 17585 gass 19331 gsum2d 20004 pzriprnglem4 21512 pzriprnglem10 21518 tx2cn 23633 txtube 23663 txcmplem1 23664 hausdiag 23668 xkoinjcn 23710 caussi 25344 dvfval 25946 issh2 31237 qtophaus 33796 2ndmbfm 34242 sxbrsigalem0 34252 cvmlift2lem9 35295 cvmlift2lem11 35297 filnetlem3 36362 bj-idres 37142 idresssidinxp 38289 trclexi 43609 cnvtrcl0 43615 ovolval5lem2 46608 ovnovollem1 46611 ovnovollem2 46612 |
Copyright terms: Public domain | W3C validator |