| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5653 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpdom3 9039 marypha1lem 9384 canthp1lem2 10606 axresscn 11101 imasvscafn 17500 imasvscaf 17502 gass 19233 gsum2d 19902 pzriprnglem4 21394 pzriprnglem10 21400 tx2cn 23497 txtube 23527 txcmplem1 23528 hausdiag 23532 xkoinjcn 23574 caussi 25197 dvfval 25798 issh2 31138 elrgspnsubrunlem2 33199 qtophaus 33826 2ndmbfm 34252 sxbrsigalem0 34262 cvmlift2lem9 35298 cvmlift2lem11 35300 filnetlem3 36368 bj-idres 37148 idresssidinxp 38296 trclexi 43609 cnvtrcl0 43615 ovolval5lem2 46651 ovnovollem1 46654 ovnovollem2 46655 |
| Copyright terms: Public domain | W3C validator |