| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpss2 | Structured version Visualization version GIF version | ||
| Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3957 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 5631 | . 2 ⊢ ((𝐶 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐵) → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3919 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: xpdom3 8988 marypha1lem 9317 canthp1lem2 10541 axresscn 11036 imasvscafn 17438 imasvscaf 17440 gass 19211 gsum2d 19882 pzriprnglem4 21419 pzriprnglem10 21425 tx2cn 23523 txtube 23553 txcmplem1 23554 hausdiag 23558 xkoinjcn 23600 caussi 25222 dvfval 25823 issh2 31184 elrgspnsubrunlem2 33210 qtophaus 33844 2ndmbfm 34269 sxbrsigalem0 34279 cvmlift2lem9 35343 cvmlift2lem11 35345 filnetlem3 36413 bj-idres 37193 idresssidinxp 38341 trclexi 43652 cnvtrcl0 43658 ovolval5lem2 46690 ovnovollem1 46693 ovnovollem2 46694 |
| Copyright terms: Public domain | W3C validator |