![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrhash | Structured version Visualization version GIF version |
Description: There are exactly ϕ(𝑁) Dirichlet characters modulo 𝑁. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
sumdchr.g | ⊢ 𝐺 = (DChr‘𝑁) |
sumdchr.d | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrhash | ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . 6 ⊢ (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) | |
2 | eqid 2740 | . . . . . 6 ⊢ (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁)) | |
3 | 1, 2 | znfi 21601 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) |
4 | sumdchr.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | sumdchr.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
6 | 4, 5 | dchrfi 27317 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐷 ∈ Fin) |
7 | simprr 772 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑥 ∈ 𝐷) | |
8 | 4, 1, 5, 2, 7 | dchrf 27304 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
9 | simprl 770 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) | |
10 | 8, 9 | ffvelcdmd 7119 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → (𝑥‘𝑎) ∈ ℂ) |
11 | 3, 6, 10 | fsumcom 15823 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = Σ𝑥 ∈ 𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎)) |
12 | eqid 2740 | . . . . . . 7 ⊢ (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁)) | |
13 | simpl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ) | |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) | |
15 | 4, 5, 1, 12, 2, 13, 14 | sumdchr2 27332 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) |
16 | velsn 4664 | . . . . . . 7 ⊢ (𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) | |
17 | ifbi 4570 | . . . . . . 7 ⊢ ((𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) | |
18 | 16, 17 | mp1i 13 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) |
19 | 15, 18 | eqtr4d 2783 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
20 | 19 | sumeq2dv 15750 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
21 | eqid 2740 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
22 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) | |
23 | 4, 1, 5, 21, 22, 2 | dchrsum 27331 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) |
24 | velsn 4664 | . . . . . . 7 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
25 | ifbi 4570 | . . . . . . 7 ⊢ ((𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) → if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) | |
26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) |
27 | 23, 26 | eqtr4d 2783 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
28 | 27 | sumeq2dv 15750 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
29 | 11, 20, 28 | 3eqtr3d 2788 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
30 | nnnn0 12560 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
31 | 1 | zncrng 21586 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing) |
32 | crngring 20272 | . . . . . 6 ⊢ ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring) | |
33 | 2, 12 | ringidcl 20289 | . . . . . 6 ⊢ ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
34 | 30, 31, 32, 33 | 4syl 19 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
35 | 34 | snssd 4834 | . . . 4 ⊢ (𝑁 ∈ ℕ → {(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁))) |
36 | hashcl 14405 | . . . . . 6 ⊢ (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0) | |
37 | nn0cn 12563 | . . . . . 6 ⊢ ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℂ) | |
38 | 6, 36, 37 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) ∈ ℂ) |
39 | 38 | ralrimivw 3156 | . . . 4 ⊢ (𝑁 ∈ ℕ → ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) |
40 | 3 | olcd 873 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ≥‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) |
41 | sumss2 15774 | . . . 4 ⊢ ((({(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ≥‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) | |
42 | 35, 39, 40, 41 | syl21anc 837 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
43 | 4 | dchrabl 27316 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
44 | ablgrp 19827 | . . . . . 6 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
45 | 5, 21 | grpidcl 19005 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐷) |
46 | 43, 44, 45 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0g‘𝐺) ∈ 𝐷) |
47 | 46 | snssd 4834 | . . . 4 ⊢ (𝑁 ∈ ℕ → {(0g‘𝐺)} ⊆ 𝐷) |
48 | phicl 16816 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
49 | 48 | nncnd 12309 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℂ) |
50 | 49 | ralrimivw 3156 | . . . 4 ⊢ (𝑁 ∈ ℕ → ∀𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) ∈ ℂ) |
51 | 6 | olcd 873 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐷 ⊆ (ℤ≥‘0) ∨ 𝐷 ∈ Fin)) |
52 | sumss2 15774 | . . . 4 ⊢ ((({(0g‘𝐺)} ⊆ 𝐷 ∧ ∀𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) ∈ ℂ) ∧ (𝐷 ⊆ (ℤ≥‘0) ∨ 𝐷 ∈ Fin)) → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) | |
53 | 47, 50, 51, 52 | syl21anc 837 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
54 | 29, 42, 53 | 3eqtr4d 2790 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁)) |
55 | eqidd 2741 | . . . 4 ⊢ (𝑎 = (1r‘(ℤ/nℤ‘𝑁)) → (♯‘𝐷) = (♯‘𝐷)) | |
56 | 55 | sumsn 15794 | . . 3 ⊢ (((1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (♯‘𝐷) ∈ ℂ) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷)) |
57 | 34, 38, 56 | syl2anc 583 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷)) |
58 | eqidd 2741 | . . . 4 ⊢ (𝑥 = (0g‘𝐺) → (ϕ‘𝑁) = (ϕ‘𝑁)) | |
59 | 58 | sumsn 15794 | . . 3 ⊢ (((0g‘𝐺) ∈ 𝐷 ∧ (ϕ‘𝑁) ∈ ℂ) → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁)) |
60 | 46, 49, 59 | syl2anc 583 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁)) |
61 | 54, 57, 60 | 3eqtr3d 2788 | 1 ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ifcif 4548 {csn 4648 ‘cfv 6573 Fincfn 9003 ℂcc 11182 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 ℤ≥cuz 12903 ♯chash 14379 Σcsu 15734 ϕcphi 16811 Basecbs 17258 0gc0g 17499 Grpcgrp 18973 Abelcabl 19823 1rcur 20208 Ringcrg 20260 CRingccrg 20261 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-rpss 7758 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-dvds 16303 df-gcd 16541 df-prm 16719 df-phi 16813 df-pc 16884 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-qus 17569 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-gim 19299 df-ga 19330 df-cntz 19357 df-oppg 19386 df-od 19570 df-gex 19571 df-pgp 19572 df-lsm 19678 df-pj1 19679 df-cmn 19824 df-abl 19825 df-cyg 19920 df-dprd 20039 df-dpj 20040 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-zn 21540 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-0p 25724 df-limc 25921 df-dv 25922 df-ply 26247 df-idp 26248 df-coe 26249 df-dgr 26250 df-quot 26351 df-log 26616 df-cxp 26617 df-dchr 27295 |
This theorem is referenced by: sumdchr 27334 |
Copyright terms: Public domain | W3C validator |