![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrhash | Structured version Visualization version GIF version |
Description: There are exactly ϕ(𝑁) Dirichlet characters modulo 𝑁. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
sumdchr.g | ⊢ 𝐺 = (DChr‘𝑁) |
sumdchr.d | ⊢ 𝐷 = (Base‘𝐺) |
Ref | Expression |
---|---|
dchrhash | ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) | |
2 | eqid 2735 | . . . . . 6 ⊢ (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁)) | |
3 | 1, 2 | znfi 21596 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) |
4 | sumdchr.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | sumdchr.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
6 | 4, 5 | dchrfi 27314 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐷 ∈ Fin) |
7 | simprr 773 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑥 ∈ 𝐷) | |
8 | 4, 1, 5, 2, 7 | dchrf 27301 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
9 | simprl 771 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) | |
10 | 8, 9 | ffvelcdmd 7105 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → (𝑥‘𝑎) ∈ ℂ) |
11 | 3, 6, 10 | fsumcom 15808 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = Σ𝑥 ∈ 𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎)) |
12 | eqid 2735 | . . . . . . 7 ⊢ (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁)) | |
13 | simpl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ) | |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) | |
15 | 4, 5, 1, 12, 2, 13, 14 | sumdchr2 27329 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) |
16 | velsn 4647 | . . . . . . 7 ⊢ (𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) | |
17 | ifbi 4553 | . . . . . . 7 ⊢ ((𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) | |
18 | 16, 17 | mp1i 13 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) |
19 | 15, 18 | eqtr4d 2778 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
20 | 19 | sumeq2dv 15735 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
21 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
22 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) | |
23 | 4, 1, 5, 21, 22, 2 | dchrsum 27328 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) |
24 | velsn 4647 | . . . . . . 7 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
25 | ifbi 4553 | . . . . . . 7 ⊢ ((𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) → if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) | |
26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) |
27 | 23, 26 | eqtr4d 2778 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
28 | 27 | sumeq2dv 15735 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
29 | 11, 20, 28 | 3eqtr3d 2783 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
30 | nnnn0 12531 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
31 | 1 | zncrng 21581 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing) |
32 | crngring 20263 | . . . . . 6 ⊢ ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring) | |
33 | 2, 12 | ringidcl 20280 | . . . . . 6 ⊢ ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
34 | 30, 31, 32, 33 | 4syl 19 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
35 | 34 | snssd 4814 | . . . 4 ⊢ (𝑁 ∈ ℕ → {(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁))) |
36 | hashcl 14392 | . . . . . 6 ⊢ (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0) | |
37 | nn0cn 12534 | . . . . . 6 ⊢ ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℂ) | |
38 | 6, 36, 37 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) ∈ ℂ) |
39 | 38 | ralrimivw 3148 | . . . 4 ⊢ (𝑁 ∈ ℕ → ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) |
40 | 3 | olcd 874 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ≥‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) |
41 | sumss2 15759 | . . . 4 ⊢ ((({(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ≥‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) | |
42 | 35, 39, 40, 41 | syl21anc 838 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
43 | 4 | dchrabl 27313 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
44 | ablgrp 19818 | . . . . . 6 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
45 | 5, 21 | grpidcl 18996 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐷) |
46 | 43, 44, 45 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0g‘𝐺) ∈ 𝐷) |
47 | 46 | snssd 4814 | . . . 4 ⊢ (𝑁 ∈ ℕ → {(0g‘𝐺)} ⊆ 𝐷) |
48 | phicl 16803 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
49 | 48 | nncnd 12280 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℂ) |
50 | 49 | ralrimivw 3148 | . . . 4 ⊢ (𝑁 ∈ ℕ → ∀𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) ∈ ℂ) |
51 | 6 | olcd 874 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐷 ⊆ (ℤ≥‘0) ∨ 𝐷 ∈ Fin)) |
52 | sumss2 15759 | . . . 4 ⊢ ((({(0g‘𝐺)} ⊆ 𝐷 ∧ ∀𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) ∈ ℂ) ∧ (𝐷 ⊆ (ℤ≥‘0) ∨ 𝐷 ∈ Fin)) → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) | |
53 | 47, 50, 51, 52 | syl21anc 838 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
54 | 29, 42, 53 | 3eqtr4d 2785 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁)) |
55 | eqidd 2736 | . . . 4 ⊢ (𝑎 = (1r‘(ℤ/nℤ‘𝑁)) → (♯‘𝐷) = (♯‘𝐷)) | |
56 | 55 | sumsn 15779 | . . 3 ⊢ (((1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (♯‘𝐷) ∈ ℂ) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷)) |
57 | 34, 38, 56 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷)) |
58 | eqidd 2736 | . . . 4 ⊢ (𝑥 = (0g‘𝐺) → (ϕ‘𝑁) = (ϕ‘𝑁)) | |
59 | 58 | sumsn 15779 | . . 3 ⊢ (((0g‘𝐺) ∈ 𝐷 ∧ (ϕ‘𝑁) ∈ ℂ) → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁)) |
60 | 46, 49, 59 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁)) |
61 | 54, 57, 60 | 3eqtr3d 2783 | 1 ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ifcif 4531 {csn 4631 ‘cfv 6563 Fincfn 8984 ℂcc 11151 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 ℤ≥cuz 12876 ♯chash 14366 Σcsu 15719 ϕcphi 16798 Basecbs 17245 0gc0g 17486 Grpcgrp 18964 Abelcabl 19814 1rcur 20199 Ringcrg 20251 CRingccrg 20252 ℤ/nℤczn 21531 DChrcdchr 27291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-rpss 7742 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-dvds 16288 df-gcd 16529 df-prm 16706 df-phi 16800 df-pc 16871 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-qus 17556 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-nsg 19155 df-eqg 19156 df-ghm 19244 df-gim 19290 df-ga 19321 df-cntz 19348 df-oppg 19377 df-od 19561 df-gex 19562 df-pgp 19563 df-lsm 19669 df-pj1 19670 df-cmn 19815 df-abl 19816 df-cyg 19911 df-dprd 20030 df-dpj 20031 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zn 21535 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-0p 25719 df-limc 25916 df-dv 25917 df-ply 26242 df-idp 26243 df-coe 26244 df-dgr 26245 df-quot 26348 df-log 26613 df-cxp 26614 df-dchr 27292 |
This theorem is referenced by: sumdchr 27331 |
Copyright terms: Public domain | W3C validator |