| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrhash | Structured version Visualization version GIF version | ||
| Description: There are exactly ϕ(𝑁) Dirichlet characters modulo 𝑁. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| sumdchr.g | ⊢ 𝐺 = (DChr‘𝑁) |
| sumdchr.d | ⊢ 𝐷 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| dchrhash | ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁)) | |
| 3 | 1, 2 | znfi 21476 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) |
| 4 | sumdchr.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
| 5 | sumdchr.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
| 6 | 4, 5 | dchrfi 27173 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝐷 ∈ Fin) |
| 7 | simprr 772 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑥 ∈ 𝐷) | |
| 8 | 4, 1, 5, 2, 7 | dchrf 27160 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
| 9 | simprl 770 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) | |
| 10 | 8, 9 | ffvelcdmd 7060 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥 ∈ 𝐷)) → (𝑥‘𝑎) ∈ ℂ) |
| 11 | 3, 6, 10 | fsumcom 15748 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = Σ𝑥 ∈ 𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎)) |
| 12 | eqid 2730 | . . . . . . 7 ⊢ (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁)) | |
| 13 | simpl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ) | |
| 14 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) | |
| 15 | 4, 5, 1, 12, 2, 13, 14 | sumdchr2 27188 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) |
| 16 | velsn 4608 | . . . . . . 7 ⊢ (𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) | |
| 17 | ifbi 4514 | . . . . . . 7 ⊢ ((𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) | |
| 18 | 16, 17 | mp1i 13 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0)) |
| 19 | 15, 18 | eqtr4d 2768 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
| 20 | 19 | sumeq2dv 15675 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥 ∈ 𝐷 (𝑥‘𝑎) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
| 21 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 22 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) | |
| 23 | 4, 1, 5, 21, 22, 2 | dchrsum 27187 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) |
| 24 | velsn 4608 | . . . . . . 7 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
| 25 | ifbi 4514 | . . . . . . 7 ⊢ ((𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) → if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) | |
| 26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g‘𝐺), (ϕ‘𝑁), 0)) |
| 27 | 23, 26 | eqtr4d 2768 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
| 28 | 27 | sumeq2dv 15675 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥‘𝑎) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
| 29 | 11, 20, 28 | 3eqtr3d 2773 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
| 30 | nnnn0 12456 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 31 | 1 | zncrng 21461 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing) |
| 32 | crngring 20161 | . . . . . 6 ⊢ ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring) | |
| 33 | 2, 12 | ringidcl 20181 | . . . . . 6 ⊢ ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
| 34 | 30, 31, 32, 33 | 4syl 19 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
| 35 | 34 | snssd 4776 | . . . 4 ⊢ (𝑁 ∈ ℕ → {(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁))) |
| 36 | hashcl 14328 | . . . . . 6 ⊢ (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0) | |
| 37 | nn0cn 12459 | . . . . . 6 ⊢ ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℂ) | |
| 38 | 6, 36, 37 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) ∈ ℂ) |
| 39 | 38 | ralrimivw 3130 | . . . 4 ⊢ (𝑁 ∈ ℕ → ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) |
| 40 | 3 | olcd 874 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ≥‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) |
| 41 | sumss2 15699 | . . . 4 ⊢ ((({(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ≥‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) | |
| 42 | 35, 39, 40, 41 | syl21anc 837 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0)) |
| 43 | 4 | dchrabl 27172 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
| 44 | ablgrp 19722 | . . . . . 6 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 45 | 5, 21 | grpidcl 18904 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐷) |
| 46 | 43, 44, 45 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0g‘𝐺) ∈ 𝐷) |
| 47 | 46 | snssd 4776 | . . . 4 ⊢ (𝑁 ∈ ℕ → {(0g‘𝐺)} ⊆ 𝐷) |
| 48 | phicl 16746 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
| 49 | 48 | nncnd 12209 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℂ) |
| 50 | 49 | ralrimivw 3130 | . . . 4 ⊢ (𝑁 ∈ ℕ → ∀𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) ∈ ℂ) |
| 51 | 6 | olcd 874 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐷 ⊆ (ℤ≥‘0) ∨ 𝐷 ∈ Fin)) |
| 52 | sumss2 15699 | . . . 4 ⊢ ((({(0g‘𝐺)} ⊆ 𝐷 ∧ ∀𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) ∈ ℂ) ∧ (𝐷 ⊆ (ℤ≥‘0) ∨ 𝐷 ∈ Fin)) → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) | |
| 53 | 47, 50, 51, 52 | syl21anc 837 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = Σ𝑥 ∈ 𝐷 if(𝑥 ∈ {(0g‘𝐺)}, (ϕ‘𝑁), 0)) |
| 54 | 29, 42, 53 | 3eqtr4d 2775 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁)) |
| 55 | eqidd 2731 | . . . 4 ⊢ (𝑎 = (1r‘(ℤ/nℤ‘𝑁)) → (♯‘𝐷) = (♯‘𝐷)) | |
| 56 | 55 | sumsn 15719 | . . 3 ⊢ (((1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (♯‘𝐷) ∈ ℂ) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷)) |
| 57 | 34, 38, 56 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷)) |
| 58 | eqidd 2731 | . . . 4 ⊢ (𝑥 = (0g‘𝐺) → (ϕ‘𝑁) = (ϕ‘𝑁)) | |
| 59 | 58 | sumsn 15719 | . . 3 ⊢ (((0g‘𝐺) ∈ 𝐷 ∧ (ϕ‘𝑁) ∈ ℂ) → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁)) |
| 60 | 46, 49, 59 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g‘𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁)) |
| 61 | 54, 57, 60 | 3eqtr3d 2773 | 1 ⊢ (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ifcif 4491 {csn 4592 ‘cfv 6514 Fincfn 8921 ℂcc 11073 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ℤ≥cuz 12800 ♯chash 14302 Σcsu 15659 ϕcphi 16741 Basecbs 17186 0gc0g 17409 Grpcgrp 18872 Abelcabl 19718 1rcur 20097 Ringcrg 20149 CRingccrg 20150 ℤ/nℤczn 21419 DChrcdchr 27150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-dvds 16230 df-gcd 16472 df-prm 16649 df-phi 16743 df-pc 16815 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-qus 17479 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-gim 19198 df-ga 19229 df-cntz 19256 df-oppg 19285 df-od 19465 df-gex 19466 df-pgp 19467 df-lsm 19573 df-pj1 19574 df-cmn 19719 df-abl 19720 df-cyg 19815 df-dprd 19934 df-dpj 19935 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-2idl 21167 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-zn 21423 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-0p 25578 df-limc 25774 df-dv 25775 df-ply 26100 df-idp 26101 df-coe 26102 df-dgr 26103 df-quot 26206 df-log 26472 df-cxp 26473 df-dchr 27151 |
| This theorem is referenced by: sumdchr 27190 |
| Copyright terms: Public domain | W3C validator |