MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrhash Structured version   Visualization version   GIF version

Theorem dchrhash 26152
Description: There are exactly ϕ(𝑁) Dirichlet characters modulo 𝑁. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g 𝐺 = (DChr‘𝑁)
sumdchr.d 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrhash (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁))

Proof of Theorem dchrhash
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . 6 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
2 eqid 2737 . . . . . 6 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
31, 2znfi 20524 . . . . 5 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
4 sumdchr.g . . . . . 6 𝐺 = (DChr‘𝑁)
5 sumdchr.d . . . . . 6 𝐷 = (Base‘𝐺)
64, 5dchrfi 26136 . . . . 5 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
7 simprr 773 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑥𝐷)
84, 1, 5, 2, 7dchrf 26123 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 simprl 771 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)))
108, 9ffvelrnd 6905 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → (𝑥𝑎) ∈ ℂ)
113, 6, 10fsumcom 15339 . . . 4 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥𝐷 (𝑥𝑎) = Σ𝑥𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎))
12 eqid 2737 . . . . . . 7 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
13 simpl 486 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
14 simpr 488 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)))
154, 5, 1, 12, 2, 13, 14sumdchr2 26151 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥𝐷 (𝑥𝑎) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0))
16 velsn 4557 . . . . . . 7 (𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁)))
17 ifbi 4461 . . . . . . 7 ((𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0))
1816, 17mp1i 13 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0))
1915, 18eqtr4d 2780 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥𝐷 (𝑥𝑎) = if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
2019sumeq2dv 15267 . . . 4 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥𝐷 (𝑥𝑎) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
21 eqid 2737 . . . . . . 7 (0g𝐺) = (0g𝐺)
22 simpr 488 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → 𝑥𝐷)
234, 1, 5, 21, 22, 2dchrsum 26150 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
24 velsn 4557 . . . . . . 7 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
25 ifbi 4461 . . . . . . 7 ((𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺)) → if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
2624, 25mp1i 13 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
2723, 26eqtr4d 2780 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
2827sumeq2dv 15267 . . . 4 (𝑁 ∈ ℕ → Σ𝑥𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
2911, 20, 283eqtr3d 2785 . . 3 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
30 nnnn0 12097 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
311zncrng 20509 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
32 crngring 19574 . . . . . 6 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
332, 12ringidcl 19586 . . . . . 6 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3430, 31, 32, 334syl 19 . . . . 5 (𝑁 ∈ ℕ → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3534snssd 4722 . . . 4 (𝑁 ∈ ℕ → {(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)))
36 hashcl 13923 . . . . . 6 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
37 nn0cn 12100 . . . . . 6 ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℂ)
386, 36, 373syl 18 . . . . 5 (𝑁 ∈ ℕ → (♯‘𝐷) ∈ ℂ)
3938ralrimivw 3106 . . . 4 (𝑁 ∈ ℕ → ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ)
403olcd 874 . . . 4 (𝑁 ∈ ℕ → ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin))
41 sumss2 15290 . . . 4 ((({(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
4235, 39, 40, 41syl21anc 838 . . 3 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
434dchrabl 26135 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
44 ablgrp 19175 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
455, 21grpidcl 18395 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
4643, 44, 453syl 18 . . . . 5 (𝑁 ∈ ℕ → (0g𝐺) ∈ 𝐷)
4746snssd 4722 . . . 4 (𝑁 ∈ ℕ → {(0g𝐺)} ⊆ 𝐷)
48 phicl 16322 . . . . . 6 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
4948nncnd 11846 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℂ)
5049ralrimivw 3106 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) ∈ ℂ)
516olcd 874 . . . 4 (𝑁 ∈ ℕ → (𝐷 ⊆ (ℤ‘0) ∨ 𝐷 ∈ Fin))
52 sumss2 15290 . . . 4 ((({(0g𝐺)} ⊆ 𝐷 ∧ ∀𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) ∈ ℂ) ∧ (𝐷 ⊆ (ℤ‘0) ∨ 𝐷 ∈ Fin)) → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
5347, 50, 51, 52syl21anc 838 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
5429, 42, 533eqtr4d 2787 . 2 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁))
55 eqidd 2738 . . . 4 (𝑎 = (1r‘(ℤ/nℤ‘𝑁)) → (♯‘𝐷) = (♯‘𝐷))
5655sumsn 15310 . . 3 (((1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (♯‘𝐷) ∈ ℂ) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷))
5734, 38, 56syl2anc 587 . 2 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷))
58 eqidd 2738 . . . 4 (𝑥 = (0g𝐺) → (ϕ‘𝑁) = (ϕ‘𝑁))
5958sumsn 15310 . . 3 (((0g𝐺) ∈ 𝐷 ∧ (ϕ‘𝑁) ∈ ℂ) → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁))
6046, 49, 59syl2anc 587 . 2 (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁))
6154, 57, 603eqtr3d 2785 1 (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wral 3061  wss 3866  ifcif 4439  {csn 4541  cfv 6380  Fincfn 8626  cc 10727  0cc0 10729  cn 11830  0cn0 12090  cuz 12438  chash 13896  Σcsu 15249  ϕcphi 16317  Basecbs 16760  0gc0g 16944  Grpcgrp 18365  Abelcabl 19171  1rcur 19516  Ringcrg 19562  CRingccrg 19563  ℤ/nczn 20469  DChrcdchr 26113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-rpss 7511  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-ec 8393  df-qs 8397  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-phi 16319  df-pc 16390  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-qus 17014  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-nsg 18541  df-eqg 18542  df-ghm 18620  df-gim 18663  df-ga 18684  df-cntz 18711  df-oppg 18738  df-od 18920  df-gex 18921  df-pgp 18922  df-lsm 19025  df-pj1 19026  df-cmn 19172  df-abl 19173  df-cyg 19262  df-dprd 19382  df-dpj 19383  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-rnghom 19735  df-subrg 19798  df-lmod 19901  df-lss 19969  df-lsp 20009  df-sra 20209  df-rgmod 20210  df-lidl 20211  df-rsp 20212  df-2idl 20270  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-zring 20436  df-zrh 20470  df-zn 20473  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-0p 24567  df-limc 24763  df-dv 24764  df-ply 25082  df-idp 25083  df-coe 25084  df-dgr 25085  df-quot 25184  df-log 25445  df-cxp 25446  df-dchr 26114
This theorem is referenced by:  sumdchr  26153
  Copyright terms: Public domain W3C validator