MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madugsum Structured version   Visualization version   GIF version

Theorem madugsum 22558
Description: The determinant of a matrix with a row 𝐿 consisting of the same element 𝑋 is the sum of the elements of the 𝐿-th column of the adjunct of the matrix multiplied with 𝑋. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
madugsum.d 𝐷 = (𝑁 maDet 𝑅)
madugsum.t · = (.r𝑅)
madugsum.k 𝐾 = (Base‘𝑅)
madugsum.m (𝜑𝑀𝐵)
madugsum.r (𝜑𝑅 ∈ CRing)
madugsum.x ((𝜑𝑖𝑁) → 𝑋𝐾)
madugsum.l (𝜑𝐿𝑁)
Assertion
Ref Expression
madugsum (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐵,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐽   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑗,𝑋   · ,𝑖   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑗)   𝐽(𝑗)   𝑋(𝑖)

Proof of Theorem madugsum
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5178 . . . . 5 (𝑐 = ∅ → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
21oveq2d 7362 . . . 4 (𝑐 = ∅ → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
3 eleq2 2820 . . . . . . . 8 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
43ifbid 4496 . . . . . . 7 (𝑐 = ∅ → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)))
54ifeq1d 4492 . . . . . 6 (𝑐 = ∅ → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
65mpoeq3dv 7425 . . . . 5 (𝑐 = ∅ → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
76fveq2d 6826 . . . 4 (𝑐 = ∅ → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
82, 7eqeq12d 2747 . . 3 (𝑐 = ∅ → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
9 mpteq1 5178 . . . . 5 (𝑐 = 𝑑 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
109oveq2d 7362 . . . 4 (𝑐 = 𝑑 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
11 eleq2 2820 . . . . . . . 8 (𝑐 = 𝑑 → (𝑏𝑐𝑏𝑑))
1211ifbid 4496 . . . . . . 7 (𝑐 = 𝑑 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)))
1312ifeq1d 4492 . . . . . 6 (𝑐 = 𝑑 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
1413mpoeq3dv 7425 . . . . 5 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
1514fveq2d 6826 . . . 4 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
1610, 15eqeq12d 2747 . . 3 (𝑐 = 𝑑 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
17 mpteq1 5178 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
1817oveq2d 7362 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
19 eleq2 2820 . . . . . . . 8 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐𝑏 ∈ (𝑑 ∪ {𝑒})))
2019ifbid 4496 . . . . . . 7 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)))
2120ifeq1d 4492 . . . . . 6 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
2221mpoeq3dv 7425 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
2322fveq2d 6826 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
2418, 23eqeq12d 2747 . . 3 (𝑐 = (𝑑 ∪ {𝑒}) → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
25 mpteq1 5178 . . . . 5 (𝑐 = 𝑁 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
2625oveq2d 7362 . . . 4 (𝑐 = 𝑁 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
27 eleq2 2820 . . . . . . . 8 (𝑐 = 𝑁 → (𝑏𝑐𝑏𝑁))
2827ifbid 4496 . . . . . . 7 (𝑐 = 𝑁 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
2928ifeq1d 4492 . . . . . 6 (𝑐 = 𝑁 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
3029mpoeq3dv 7425 . . . . 5 (𝑐 = 𝑁 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
3130fveq2d 6826 . . . 4 (𝑐 = 𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
3226, 31eqeq12d 2747 . . 3 (𝑐 = 𝑁 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
33 mpt0 6623 . . . . . 6 (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = ∅
3433oveq2i 7357 . . . . 5 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg ∅)
35 eqid 2731 . . . . . 6 (0g𝑅) = (0g𝑅)
3635gsum0 18592 . . . . 5 (𝑅 Σg ∅) = (0g𝑅)
3734, 36eqtri 2754 . . . 4 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (0g𝑅)
38 noel 4285 . . . . . . . . 9 ¬ 𝑏 ∈ ∅
39 iffalse 4481 . . . . . . . . 9 𝑏 ∈ ∅ → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
4038, 39mp1i 13 . . . . . . . 8 ((𝑎𝑁𝑏𝑁) → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
4140ifeq1d 4492 . . . . . . 7 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
4241mpoeq3ia 7424 . . . . . 6 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
4342fveq2i 6825 . . . . 5 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏))))
44 madugsum.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
45 madugsum.k . . . . . 6 𝐾 = (Base‘𝑅)
46 madugsum.r . . . . . 6 (𝜑𝑅 ∈ CRing)
47 madugsum.m . . . . . . . 8 (𝜑𝑀𝐵)
48 maduf.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
49 maduf.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
5048, 49matrcl 22327 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5147, 50syl 17 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5251simpld 494 . . . . . 6 (𝜑𝑁 ∈ Fin)
5348, 45, 49matbas2i 22337 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (𝐾m (𝑁 × 𝑁)))
54 elmapi 8773 . . . . . . . . 9 (𝑀 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
5547, 53, 543syl 18 . . . . . . . 8 (𝜑𝑀:(𝑁 × 𝑁)⟶𝐾)
5655fovcdmda 7517 . . . . . . 7 ((𝜑 ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
57563impb 1114 . . . . . 6 ((𝜑𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
58 madugsum.l . . . . . 6 (𝜑𝐿𝑁)
5944, 45, 35, 46, 52, 57, 58mdetr0 22520 . . . . 5 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))) = (0g𝑅))
6043, 59eqtrid 2778 . . . 4 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (0g𝑅))
6137, 60eqtr4id 2785 . . 3 (𝜑 → (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
62 eqid 2731 . . . . . . 7 (+g𝑅) = (+g𝑅)
6346adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CRing)
64 crngring 20163 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
6563, 64syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Ring)
66 ringcmn 20200 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6765, 66syl 17 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CMnd)
6852adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑁 ∈ Fin)
69 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑𝑁)
7068, 69ssfid 9153 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑 ∈ Fin)
7165adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑅 ∈ Ring)
7269sselda 3929 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏𝑁)
73 madugsum.x . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑋𝐾)
7473ralrimiva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑁 𝑋𝐾)
7574ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → ∀𝑖𝑁 𝑋𝐾)
76 rspcsbela 4385 . . . . . . . . 9 ((𝑏𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑏 / 𝑖𝑋𝐾)
7772, 75, 76syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏 / 𝑖𝑋𝐾)
78 maduf.j . . . . . . . . . . . . . 14 𝐽 = (𝑁 maAdju 𝑅)
7948, 78, 49maduf 22556 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
8046, 79syl 17 . . . . . . . . . . . 12 (𝜑𝐽:𝐵𝐵)
8180, 47ffvelcdmd 7018 . . . . . . . . . . 11 (𝜑 → (𝐽𝑀) ∈ 𝐵)
8248, 45, 49matbas2i 22337 . . . . . . . . . . 11 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ (𝐾m (𝑁 × 𝑁)))
83 elmapi 8773 . . . . . . . . . . 11 ((𝐽𝑀) ∈ (𝐾m (𝑁 × 𝑁)) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8481, 82, 833syl 18 . . . . . . . . . 10 (𝜑 → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8584ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8658ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝐿𝑁)
8785, 72, 86fovcdmd 7518 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏(𝐽𝑀)𝐿) ∈ 𝐾)
88 madugsum.t . . . . . . . . 9 · = (.r𝑅)
8945, 88ringcl 20168 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑏 / 𝑖𝑋𝐾 ∧ (𝑏(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
9071, 77, 87, 89syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
91 vex 3440 . . . . . . . 8 𝑒 ∈ V
9291a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 ∈ V)
93 eldifn 4079 . . . . . . . 8 (𝑒 ∈ (𝑁𝑑) → ¬ 𝑒𝑑)
9493ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ 𝑒𝑑)
95 eldifi 4078 . . . . . . . . . 10 (𝑒 ∈ (𝑁𝑑) → 𝑒𝑁)
9695ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒𝑁)
9774adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ∀𝑖𝑁 𝑋𝐾)
98 rspcsbela 4385 . . . . . . . . 9 ((𝑒𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑒 / 𝑖𝑋𝐾)
9996, 97, 98syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 / 𝑖𝑋𝐾)
10084adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
10158adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝐿𝑁)
102100, 96, 101fovcdmd 7518 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) ∈ 𝐾)
10345, 88ringcl 20168 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ (𝑒(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
10465, 99, 102, 103syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
105 csbeq1 3848 . . . . . . . 8 (𝑏 = 𝑒𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
106 oveq1 7353 . . . . . . . 8 (𝑏 = 𝑒 → (𝑏(𝐽𝑀)𝐿) = (𝑒(𝐽𝑀)𝐿))
107105, 106oveq12d 7364 . . . . . . 7 (𝑏 = 𝑒 → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
10845, 62, 67, 70, 90, 92, 94, 104, 107gsumunsn 19872 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
109108adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
110 oveq1 7353 . . . . . 6 ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
111110adantl 481 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
112 elun 4100 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 ∈ {𝑒}))
113 velsn 4589 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑒} ↔ 𝑏 = 𝑒)
114113orbi2i 912 . . . . . . . . . . . . . 14 ((𝑏𝑑𝑏 ∈ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
115112, 114bitri 275 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
116 ifbi 4495 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒)) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)))
117115, 116ax-mp 5 . . . . . . . . . . . 12 if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅))
118 ringmnd 20161 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
11965, 118syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Mnd)
1201193ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Mnd)
121 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
122973ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ∀𝑖𝑁 𝑋𝐾)
123121, 122, 76syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋𝐾)
124 elequ1 2118 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝑏𝑑𝑒𝑑))
125124biimpac 478 . . . . . . . . . . . . . . 15 ((𝑏𝑑𝑏 = 𝑒) → 𝑒𝑑)
12694, 125nsyl 140 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ (𝑏𝑑𝑏 = 𝑒))
1271263ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ¬ (𝑏𝑑𝑏 = 𝑒))
12845, 35, 62mndifsplit 22551 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ 𝑏 / 𝑖𝑋𝐾 ∧ ¬ (𝑏𝑑𝑏 = 𝑒)) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
129120, 123, 127, 128syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
130117, 129eqtrid 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
131105adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏 = 𝑒) → 𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
132131ifeq1da 4504 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
133 ovif2 7445 . . . . . . . . . . . . . . 15 (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅)))
134 eqid 2731 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
13545, 88, 134ringridm 20188 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13665, 99, 135syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13745, 88, 35ringrz 20212 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
13865, 99, 137syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
139136, 138ifeq12d 4494 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
140133, 139eqtrid 2778 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
141132, 140eqtr4d 2769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))))
142141oveq2d 7362 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
1431423ad2ant1 1133 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
144130, 143eqtrd 2766 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
145144ifeq1d 4492 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))
146145mpoeq3dva 7423 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏))))
147146fveq2d 6826 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))))
14845, 35ring0cl 20185 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐾)
14965, 148syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (0g𝑅) ∈ 𝐾)
1501493ad2ant1 1133 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (0g𝑅) ∈ 𝐾)
151123, 150ifcld 4519 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)) ∈ 𝐾)
15245, 134ringidcl 20183 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
15365, 152syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (1r𝑅) ∈ 𝐾)
154153, 149ifcld 4519 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
15545, 88ringcl 20168 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15665, 99, 154, 155syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
1571563ad2ant1 1133 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15855adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
159158fovcdmda 7517 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
1601593impb 1114 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
16144, 45, 62, 63, 68, 151, 157, 160, 101mdetrlin2 22522 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))))
1621543ad2ant1 1133 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
16344, 45, 88, 63, 68, 162, 160, 99, 101mdetrsca2 22519 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
16447adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀𝐵)
16548, 44, 78, 49, 134, 35maducoeval 22554 . . . . . . . . . . 11 ((𝑀𝐵𝑒𝑁𝐿𝑁) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
166164, 96, 101, 165syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
167166oveq2d 7362 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
168163, 167eqtr4d 2769 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
169168oveq2d 7362 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
170147, 161, 1693eqtrrd 2771 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
171170adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
172109, 111, 1713eqtrd 2770 . . . 4 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
173172ex 412 . . 3 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
1748, 16, 24, 32, 61, 173, 52findcard2d 9076 . 2 (𝜑 → (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
175 nfcv 2894 . . . 4 𝑏(𝑋 · (𝑖(𝐽𝑀)𝐿))
176 nfcsb1v 3869 . . . . 5 𝑖𝑏 / 𝑖𝑋
177 nfcv 2894 . . . . 5 𝑖 ·
178 nfcv 2894 . . . . 5 𝑖(𝑏(𝐽𝑀)𝐿)
179176, 177, 178nfov 7376 . . . 4 𝑖(𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))
180 csbeq1a 3859 . . . . 5 (𝑖 = 𝑏𝑋 = 𝑏 / 𝑖𝑋)
181 oveq1 7353 . . . . 5 (𝑖 = 𝑏 → (𝑖(𝐽𝑀)𝐿) = (𝑏(𝐽𝑀)𝐿))
182180, 181oveq12d 7364 . . . 4 (𝑖 = 𝑏 → (𝑋 · (𝑖(𝐽𝑀)𝐿)) = (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
183175, 179, 182cbvmpt 5191 . . 3 (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
184183oveq2i 7357 . 2 (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
185 nfcv 2894 . . . . 5 𝑎if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
186 nfcv 2894 . . . . 5 𝑏if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
187 nfcv 2894 . . . . 5 𝑗if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
188 nfv 1915 . . . . . 6 𝑖 𝑎 = 𝐿
189 nfcv 2894 . . . . . 6 𝑖(𝑎𝑀𝑏)
190188, 176, 189nfif 4503 . . . . 5 𝑖if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
191 eqeq1 2735 . . . . . . 7 (𝑗 = 𝑎 → (𝑗 = 𝐿𝑎 = 𝐿))
192191adantr 480 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗 = 𝐿𝑎 = 𝐿))
193180adantl 481 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → 𝑋 = 𝑏 / 𝑖𝑋)
194 oveq12 7355 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗𝑀𝑖) = (𝑎𝑀𝑏))
195192, 193, 194ifbieq12d 4501 . . . . 5 ((𝑗 = 𝑎𝑖 = 𝑏) → if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)) = if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
196185, 186, 187, 190, 195cbvmpo 7440 . . . 4 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
197 iftrue 4478 . . . . . . . 8 (𝑏𝑁 → if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)) = 𝑏 / 𝑖𝑋)
198197eqcomd 2737 . . . . . . 7 (𝑏𝑁𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
199198adantl 481 . . . . . 6 ((𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
200199ifeq1d 4492 . . . . 5 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
201200mpoeq3ia 7424 . . . 4 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
202196, 201eqtri 2754 . . 3 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
203202fveq2i 6825 . 2 (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
204174, 184, 2033eqtr4g 2791 1 (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  csb 3845  cdif 3894  cun 3895  wss 3897  c0 4280  ifcif 4472  {csn 4573  cmpt 5170   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  CMndccmn 19692  1rcur 20099  Ringcrg 20151  CRingccrg 20152   Mat cmat 22322   maDet cmdat 22499   maAdju cmadu 22547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19125  df-gim 19171  df-cntz 19229  df-oppg 19258  df-symg 19282  df-pmtr 19354  df-psgn 19403  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-dsmm 21669  df-frlm 21684  df-mat 22323  df-mdet 22500  df-madu 22549
This theorem is referenced by:  madurid  22559  mdetlap1  33839
  Copyright terms: Public domain W3C validator