MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madugsum Structured version   Visualization version   GIF version

Theorem madugsum 22670
Description: The determinant of a matrix with a row 𝐿 consisting of the same element 𝑋 is the sum of the elements of the 𝐿-th column of the adjunct of the matrix multiplied with 𝑋. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
madugsum.d 𝐷 = (𝑁 maDet 𝑅)
madugsum.t · = (.r𝑅)
madugsum.k 𝐾 = (Base‘𝑅)
madugsum.m (𝜑𝑀𝐵)
madugsum.r (𝜑𝑅 ∈ CRing)
madugsum.x ((𝜑𝑖𝑁) → 𝑋𝐾)
madugsum.l (𝜑𝐿𝑁)
Assertion
Ref Expression
madugsum (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐵,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐽   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑗,𝑋   · ,𝑖   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑗)   𝐽(𝑗)   𝑋(𝑖)

Proof of Theorem madugsum
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5259 . . . . 5 (𝑐 = ∅ → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
21oveq2d 7464 . . . 4 (𝑐 = ∅ → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
3 eleq2 2833 . . . . . . . 8 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
43ifbid 4571 . . . . . . 7 (𝑐 = ∅ → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)))
54ifeq1d 4567 . . . . . 6 (𝑐 = ∅ → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
65mpoeq3dv 7529 . . . . 5 (𝑐 = ∅ → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
76fveq2d 6924 . . . 4 (𝑐 = ∅ → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
82, 7eqeq12d 2756 . . 3 (𝑐 = ∅ → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
9 mpteq1 5259 . . . . 5 (𝑐 = 𝑑 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
109oveq2d 7464 . . . 4 (𝑐 = 𝑑 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
11 eleq2 2833 . . . . . . . 8 (𝑐 = 𝑑 → (𝑏𝑐𝑏𝑑))
1211ifbid 4571 . . . . . . 7 (𝑐 = 𝑑 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)))
1312ifeq1d 4567 . . . . . 6 (𝑐 = 𝑑 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
1413mpoeq3dv 7529 . . . . 5 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
1514fveq2d 6924 . . . 4 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
1610, 15eqeq12d 2756 . . 3 (𝑐 = 𝑑 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
17 mpteq1 5259 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
1817oveq2d 7464 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
19 eleq2 2833 . . . . . . . 8 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐𝑏 ∈ (𝑑 ∪ {𝑒})))
2019ifbid 4571 . . . . . . 7 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)))
2120ifeq1d 4567 . . . . . 6 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
2221mpoeq3dv 7529 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
2322fveq2d 6924 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
2418, 23eqeq12d 2756 . . 3 (𝑐 = (𝑑 ∪ {𝑒}) → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
25 mpteq1 5259 . . . . 5 (𝑐 = 𝑁 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
2625oveq2d 7464 . . . 4 (𝑐 = 𝑁 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
27 eleq2 2833 . . . . . . . 8 (𝑐 = 𝑁 → (𝑏𝑐𝑏𝑁))
2827ifbid 4571 . . . . . . 7 (𝑐 = 𝑁 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
2928ifeq1d 4567 . . . . . 6 (𝑐 = 𝑁 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
3029mpoeq3dv 7529 . . . . 5 (𝑐 = 𝑁 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
3130fveq2d 6924 . . . 4 (𝑐 = 𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
3226, 31eqeq12d 2756 . . 3 (𝑐 = 𝑁 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
33 mpt0 6722 . . . . . 6 (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = ∅
3433oveq2i 7459 . . . . 5 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg ∅)
35 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
3635gsum0 18722 . . . . 5 (𝑅 Σg ∅) = (0g𝑅)
3734, 36eqtri 2768 . . . 4 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (0g𝑅)
38 noel 4360 . . . . . . . . 9 ¬ 𝑏 ∈ ∅
39 iffalse 4557 . . . . . . . . 9 𝑏 ∈ ∅ → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
4038, 39mp1i 13 . . . . . . . 8 ((𝑎𝑁𝑏𝑁) → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
4140ifeq1d 4567 . . . . . . 7 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
4241mpoeq3ia 7528 . . . . . 6 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
4342fveq2i 6923 . . . . 5 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏))))
44 madugsum.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
45 madugsum.k . . . . . 6 𝐾 = (Base‘𝑅)
46 madugsum.r . . . . . 6 (𝜑𝑅 ∈ CRing)
47 madugsum.m . . . . . . . 8 (𝜑𝑀𝐵)
48 maduf.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
49 maduf.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
5048, 49matrcl 22437 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5147, 50syl 17 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5251simpld 494 . . . . . 6 (𝜑𝑁 ∈ Fin)
5348, 45, 49matbas2i 22449 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (𝐾m (𝑁 × 𝑁)))
54 elmapi 8907 . . . . . . . . 9 (𝑀 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
5547, 53, 543syl 18 . . . . . . . 8 (𝜑𝑀:(𝑁 × 𝑁)⟶𝐾)
5655fovcdmda 7621 . . . . . . 7 ((𝜑 ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
57563impb 1115 . . . . . 6 ((𝜑𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
58 madugsum.l . . . . . 6 (𝜑𝐿𝑁)
5944, 45, 35, 46, 52, 57, 58mdetr0 22632 . . . . 5 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))) = (0g𝑅))
6043, 59eqtrid 2792 . . . 4 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (0g𝑅))
6137, 60eqtr4id 2799 . . 3 (𝜑 → (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
62 eqid 2740 . . . . . . 7 (+g𝑅) = (+g𝑅)
6346adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CRing)
64 crngring 20272 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
6563, 64syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Ring)
66 ringcmn 20305 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6765, 66syl 17 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CMnd)
6852adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑁 ∈ Fin)
69 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑𝑁)
7068, 69ssfid 9329 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑 ∈ Fin)
7165adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑅 ∈ Ring)
7269sselda 4008 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏𝑁)
73 madugsum.x . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑋𝐾)
7473ralrimiva 3152 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑁 𝑋𝐾)
7574ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → ∀𝑖𝑁 𝑋𝐾)
76 rspcsbela 4461 . . . . . . . . 9 ((𝑏𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑏 / 𝑖𝑋𝐾)
7772, 75, 76syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏 / 𝑖𝑋𝐾)
78 maduf.j . . . . . . . . . . . . . 14 𝐽 = (𝑁 maAdju 𝑅)
7948, 78, 49maduf 22668 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
8046, 79syl 17 . . . . . . . . . . . 12 (𝜑𝐽:𝐵𝐵)
8180, 47ffvelcdmd 7119 . . . . . . . . . . 11 (𝜑 → (𝐽𝑀) ∈ 𝐵)
8248, 45, 49matbas2i 22449 . . . . . . . . . . 11 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ (𝐾m (𝑁 × 𝑁)))
83 elmapi 8907 . . . . . . . . . . 11 ((𝐽𝑀) ∈ (𝐾m (𝑁 × 𝑁)) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8481, 82, 833syl 18 . . . . . . . . . 10 (𝜑 → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8584ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8658ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝐿𝑁)
8785, 72, 86fovcdmd 7622 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏(𝐽𝑀)𝐿) ∈ 𝐾)
88 madugsum.t . . . . . . . . 9 · = (.r𝑅)
8945, 88ringcl 20277 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑏 / 𝑖𝑋𝐾 ∧ (𝑏(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
9071, 77, 87, 89syl3anc 1371 . . . . . . 7 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
91 vex 3492 . . . . . . . 8 𝑒 ∈ V
9291a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 ∈ V)
93 eldifn 4155 . . . . . . . 8 (𝑒 ∈ (𝑁𝑑) → ¬ 𝑒𝑑)
9493ad2antll 728 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ 𝑒𝑑)
95 eldifi 4154 . . . . . . . . . 10 (𝑒 ∈ (𝑁𝑑) → 𝑒𝑁)
9695ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒𝑁)
9774adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ∀𝑖𝑁 𝑋𝐾)
98 rspcsbela 4461 . . . . . . . . 9 ((𝑒𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑒 / 𝑖𝑋𝐾)
9996, 97, 98syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 / 𝑖𝑋𝐾)
10084adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
10158adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝐿𝑁)
102100, 96, 101fovcdmd 7622 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) ∈ 𝐾)
10345, 88ringcl 20277 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ (𝑒(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
10465, 99, 102, 103syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
105 csbeq1 3924 . . . . . . . 8 (𝑏 = 𝑒𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
106 oveq1 7455 . . . . . . . 8 (𝑏 = 𝑒 → (𝑏(𝐽𝑀)𝐿) = (𝑒(𝐽𝑀)𝐿))
107105, 106oveq12d 7466 . . . . . . 7 (𝑏 = 𝑒 → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
10845, 62, 67, 70, 90, 92, 94, 104, 107gsumunsn 20002 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
109108adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
110 oveq1 7455 . . . . . 6 ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
111110adantl 481 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
112 elun 4176 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 ∈ {𝑒}))
113 velsn 4664 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑒} ↔ 𝑏 = 𝑒)
114113orbi2i 911 . . . . . . . . . . . . . 14 ((𝑏𝑑𝑏 ∈ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
115112, 114bitri 275 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
116 ifbi 4570 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒)) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)))
117115, 116ax-mp 5 . . . . . . . . . . . 12 if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅))
118 ringmnd 20270 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
11965, 118syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Mnd)
1201193ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Mnd)
121 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
122973ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ∀𝑖𝑁 𝑋𝐾)
123121, 122, 76syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋𝐾)
124 elequ1 2115 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝑏𝑑𝑒𝑑))
125124biimpac 478 . . . . . . . . . . . . . . 15 ((𝑏𝑑𝑏 = 𝑒) → 𝑒𝑑)
12694, 125nsyl 140 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ (𝑏𝑑𝑏 = 𝑒))
1271263ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ¬ (𝑏𝑑𝑏 = 𝑒))
12845, 35, 62mndifsplit 22663 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ 𝑏 / 𝑖𝑋𝐾 ∧ ¬ (𝑏𝑑𝑏 = 𝑒)) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
129120, 123, 127, 128syl3anc 1371 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
130117, 129eqtrid 2792 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
131105adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏 = 𝑒) → 𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
132131ifeq1da 4579 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
133 ovif2 7549 . . . . . . . . . . . . . . 15 (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅)))
134 eqid 2740 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
13545, 88, 134ringridm 20293 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13665, 99, 135syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13745, 88, 35ringrz 20317 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
13865, 99, 137syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
139136, 138ifeq12d 4569 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
140133, 139eqtrid 2792 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
141132, 140eqtr4d 2783 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))))
142141oveq2d 7464 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
1431423ad2ant1 1133 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
144130, 143eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
145144ifeq1d 4567 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))
146145mpoeq3dva 7527 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏))))
147146fveq2d 6924 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))))
14845, 35ring0cl 20290 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐾)
14965, 148syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (0g𝑅) ∈ 𝐾)
1501493ad2ant1 1133 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (0g𝑅) ∈ 𝐾)
151123, 150ifcld 4594 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)) ∈ 𝐾)
15245, 134ringidcl 20289 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
15365, 152syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (1r𝑅) ∈ 𝐾)
154153, 149ifcld 4594 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
15545, 88ringcl 20277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15665, 99, 154, 155syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
1571563ad2ant1 1133 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15855adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
159158fovcdmda 7621 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
1601593impb 1115 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
16144, 45, 62, 63, 68, 151, 157, 160, 101mdetrlin2 22634 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))))
1621543ad2ant1 1133 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
16344, 45, 88, 63, 68, 162, 160, 99, 101mdetrsca2 22631 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
16447adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀𝐵)
16548, 44, 78, 49, 134, 35maducoeval 22666 . . . . . . . . . . 11 ((𝑀𝐵𝑒𝑁𝐿𝑁) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
166164, 96, 101, 165syl3anc 1371 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
167166oveq2d 7464 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
168163, 167eqtr4d 2783 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
169168oveq2d 7464 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
170147, 161, 1693eqtrrd 2785 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
171170adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
172109, 111, 1713eqtrd 2784 . . . 4 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
173172ex 412 . . 3 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
1748, 16, 24, 32, 61, 173, 52findcard2d 9232 . 2 (𝜑 → (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
175 nfcv 2908 . . . 4 𝑏(𝑋 · (𝑖(𝐽𝑀)𝐿))
176 nfcsb1v 3946 . . . . 5 𝑖𝑏 / 𝑖𝑋
177 nfcv 2908 . . . . 5 𝑖 ·
178 nfcv 2908 . . . . 5 𝑖(𝑏(𝐽𝑀)𝐿)
179176, 177, 178nfov 7478 . . . 4 𝑖(𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))
180 csbeq1a 3935 . . . . 5 (𝑖 = 𝑏𝑋 = 𝑏 / 𝑖𝑋)
181 oveq1 7455 . . . . 5 (𝑖 = 𝑏 → (𝑖(𝐽𝑀)𝐿) = (𝑏(𝐽𝑀)𝐿))
182180, 181oveq12d 7466 . . . 4 (𝑖 = 𝑏 → (𝑋 · (𝑖(𝐽𝑀)𝐿)) = (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
183175, 179, 182cbvmpt 5277 . . 3 (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
184183oveq2i 7459 . 2 (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
185 nfcv 2908 . . . . 5 𝑎if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
186 nfcv 2908 . . . . 5 𝑏if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
187 nfcv 2908 . . . . 5 𝑗if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
188 nfv 1913 . . . . . 6 𝑖 𝑎 = 𝐿
189 nfcv 2908 . . . . . 6 𝑖(𝑎𝑀𝑏)
190188, 176, 189nfif 4578 . . . . 5 𝑖if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
191 eqeq1 2744 . . . . . . 7 (𝑗 = 𝑎 → (𝑗 = 𝐿𝑎 = 𝐿))
192191adantr 480 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗 = 𝐿𝑎 = 𝐿))
193180adantl 481 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → 𝑋 = 𝑏 / 𝑖𝑋)
194 oveq12 7457 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗𝑀𝑖) = (𝑎𝑀𝑏))
195192, 193, 194ifbieq12d 4576 . . . . 5 ((𝑗 = 𝑎𝑖 = 𝑏) → if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)) = if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
196185, 186, 187, 190, 195cbvmpo 7544 . . . 4 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
197 iftrue 4554 . . . . . . . 8 (𝑏𝑁 → if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)) = 𝑏 / 𝑖𝑋)
198197eqcomd 2746 . . . . . . 7 (𝑏𝑁𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
199198adantl 481 . . . . . 6 ((𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
200199ifeq1d 4567 . . . . 5 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
201200mpoeq3ia 7528 . . . 4 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
202196, 201eqtri 2768 . . 3 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
203202fveq2i 6923 . 2 (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
204174, 184, 2033eqtr4g 2805 1 (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  csb 3921  cdif 3973  cun 3974  wss 3976  c0 4352  ifcif 4548  {csn 4648  cmpt 5249   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  Fincfn 9003  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  CMndccmn 19822  1rcur 20208  Ringcrg 20260  CRingccrg 20261   Mat cmat 22432   maDet cmdat 22611   maAdju cmadu 22659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-mdet 22612  df-madu 22661
This theorem is referenced by:  madurid  22671  mdetlap1  33772
  Copyright terms: Public domain W3C validator