MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madugsum Structured version   Visualization version   GIF version

Theorem madugsum 22530
Description: The determinant of a matrix with a row 𝐿 consisting of the same element 𝑋 is the sum of the elements of the 𝐿-th column of the adjunct of the matrix multiplied with 𝑋. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
madugsum.d 𝐷 = (𝑁 maDet 𝑅)
madugsum.t · = (.r𝑅)
madugsum.k 𝐾 = (Base‘𝑅)
madugsum.m (𝜑𝑀𝐵)
madugsum.r (𝜑𝑅 ∈ CRing)
madugsum.x ((𝜑𝑖𝑁) → 𝑋𝐾)
madugsum.l (𝜑𝐿𝑁)
Assertion
Ref Expression
madugsum (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐵,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐽   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑗,𝑋   · ,𝑖   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑗)   𝐽(𝑗)   𝑋(𝑖)

Proof of Theorem madugsum
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5196 . . . . 5 (𝑐 = ∅ → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
21oveq2d 7403 . . . 4 (𝑐 = ∅ → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
3 eleq2 2817 . . . . . . . 8 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
43ifbid 4512 . . . . . . 7 (𝑐 = ∅ → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)))
54ifeq1d 4508 . . . . . 6 (𝑐 = ∅ → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
65mpoeq3dv 7468 . . . . 5 (𝑐 = ∅ → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
76fveq2d 6862 . . . 4 (𝑐 = ∅ → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
82, 7eqeq12d 2745 . . 3 (𝑐 = ∅ → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
9 mpteq1 5196 . . . . 5 (𝑐 = 𝑑 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
109oveq2d 7403 . . . 4 (𝑐 = 𝑑 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
11 eleq2 2817 . . . . . . . 8 (𝑐 = 𝑑 → (𝑏𝑐𝑏𝑑))
1211ifbid 4512 . . . . . . 7 (𝑐 = 𝑑 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)))
1312ifeq1d 4508 . . . . . 6 (𝑐 = 𝑑 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
1413mpoeq3dv 7468 . . . . 5 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
1514fveq2d 6862 . . . 4 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
1610, 15eqeq12d 2745 . . 3 (𝑐 = 𝑑 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
17 mpteq1 5196 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
1817oveq2d 7403 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
19 eleq2 2817 . . . . . . . 8 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐𝑏 ∈ (𝑑 ∪ {𝑒})))
2019ifbid 4512 . . . . . . 7 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)))
2120ifeq1d 4508 . . . . . 6 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
2221mpoeq3dv 7468 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
2322fveq2d 6862 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
2418, 23eqeq12d 2745 . . 3 (𝑐 = (𝑑 ∪ {𝑒}) → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
25 mpteq1 5196 . . . . 5 (𝑐 = 𝑁 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
2625oveq2d 7403 . . . 4 (𝑐 = 𝑁 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
27 eleq2 2817 . . . . . . . 8 (𝑐 = 𝑁 → (𝑏𝑐𝑏𝑁))
2827ifbid 4512 . . . . . . 7 (𝑐 = 𝑁 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
2928ifeq1d 4508 . . . . . 6 (𝑐 = 𝑁 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
3029mpoeq3dv 7468 . . . . 5 (𝑐 = 𝑁 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
3130fveq2d 6862 . . . 4 (𝑐 = 𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
3226, 31eqeq12d 2745 . . 3 (𝑐 = 𝑁 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
33 mpt0 6660 . . . . . 6 (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = ∅
3433oveq2i 7398 . . . . 5 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg ∅)
35 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
3635gsum0 18611 . . . . 5 (𝑅 Σg ∅) = (0g𝑅)
3734, 36eqtri 2752 . . . 4 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (0g𝑅)
38 noel 4301 . . . . . . . . 9 ¬ 𝑏 ∈ ∅
39 iffalse 4497 . . . . . . . . 9 𝑏 ∈ ∅ → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
4038, 39mp1i 13 . . . . . . . 8 ((𝑎𝑁𝑏𝑁) → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
4140ifeq1d 4508 . . . . . . 7 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
4241mpoeq3ia 7467 . . . . . 6 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
4342fveq2i 6861 . . . . 5 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏))))
44 madugsum.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
45 madugsum.k . . . . . 6 𝐾 = (Base‘𝑅)
46 madugsum.r . . . . . 6 (𝜑𝑅 ∈ CRing)
47 madugsum.m . . . . . . . 8 (𝜑𝑀𝐵)
48 maduf.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
49 maduf.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
5048, 49matrcl 22299 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5147, 50syl 17 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5251simpld 494 . . . . . 6 (𝜑𝑁 ∈ Fin)
5348, 45, 49matbas2i 22309 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (𝐾m (𝑁 × 𝑁)))
54 elmapi 8822 . . . . . . . . 9 (𝑀 ∈ (𝐾m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
5547, 53, 543syl 18 . . . . . . . 8 (𝜑𝑀:(𝑁 × 𝑁)⟶𝐾)
5655fovcdmda 7560 . . . . . . 7 ((𝜑 ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
57563impb 1114 . . . . . 6 ((𝜑𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
58 madugsum.l . . . . . 6 (𝜑𝐿𝑁)
5944, 45, 35, 46, 52, 57, 58mdetr0 22492 . . . . 5 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))) = (0g𝑅))
6043, 59eqtrid 2776 . . . 4 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (0g𝑅))
6137, 60eqtr4id 2783 . . 3 (𝜑 → (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
62 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
6346adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CRing)
64 crngring 20154 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
6563, 64syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Ring)
66 ringcmn 20191 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6765, 66syl 17 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CMnd)
6852adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑁 ∈ Fin)
69 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑𝑁)
7068, 69ssfid 9212 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑 ∈ Fin)
7165adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑅 ∈ Ring)
7269sselda 3946 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏𝑁)
73 madugsum.x . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑋𝐾)
7473ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑁 𝑋𝐾)
7574ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → ∀𝑖𝑁 𝑋𝐾)
76 rspcsbela 4401 . . . . . . . . 9 ((𝑏𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑏 / 𝑖𝑋𝐾)
7772, 75, 76syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏 / 𝑖𝑋𝐾)
78 maduf.j . . . . . . . . . . . . . 14 𝐽 = (𝑁 maAdju 𝑅)
7948, 78, 49maduf 22528 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
8046, 79syl 17 . . . . . . . . . . . 12 (𝜑𝐽:𝐵𝐵)
8180, 47ffvelcdmd 7057 . . . . . . . . . . 11 (𝜑 → (𝐽𝑀) ∈ 𝐵)
8248, 45, 49matbas2i 22309 . . . . . . . . . . 11 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ (𝐾m (𝑁 × 𝑁)))
83 elmapi 8822 . . . . . . . . . . 11 ((𝐽𝑀) ∈ (𝐾m (𝑁 × 𝑁)) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8481, 82, 833syl 18 . . . . . . . . . 10 (𝜑 → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8584ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8658ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝐿𝑁)
8785, 72, 86fovcdmd 7561 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏(𝐽𝑀)𝐿) ∈ 𝐾)
88 madugsum.t . . . . . . . . 9 · = (.r𝑅)
8945, 88ringcl 20159 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑏 / 𝑖𝑋𝐾 ∧ (𝑏(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
9071, 77, 87, 89syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
91 vex 3451 . . . . . . . 8 𝑒 ∈ V
9291a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 ∈ V)
93 eldifn 4095 . . . . . . . 8 (𝑒 ∈ (𝑁𝑑) → ¬ 𝑒𝑑)
9493ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ 𝑒𝑑)
95 eldifi 4094 . . . . . . . . . 10 (𝑒 ∈ (𝑁𝑑) → 𝑒𝑁)
9695ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒𝑁)
9774adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ∀𝑖𝑁 𝑋𝐾)
98 rspcsbela 4401 . . . . . . . . 9 ((𝑒𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑒 / 𝑖𝑋𝐾)
9996, 97, 98syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 / 𝑖𝑋𝐾)
10084adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
10158adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝐿𝑁)
102100, 96, 101fovcdmd 7561 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) ∈ 𝐾)
10345, 88ringcl 20159 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ (𝑒(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
10465, 99, 102, 103syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
105 csbeq1 3865 . . . . . . . 8 (𝑏 = 𝑒𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
106 oveq1 7394 . . . . . . . 8 (𝑏 = 𝑒 → (𝑏(𝐽𝑀)𝐿) = (𝑒(𝐽𝑀)𝐿))
107105, 106oveq12d 7405 . . . . . . 7 (𝑏 = 𝑒 → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
10845, 62, 67, 70, 90, 92, 94, 104, 107gsumunsn 19890 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
109108adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
110 oveq1 7394 . . . . . 6 ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
111110adantl 481 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
112 elun 4116 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 ∈ {𝑒}))
113 velsn 4605 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑒} ↔ 𝑏 = 𝑒)
114113orbi2i 912 . . . . . . . . . . . . . 14 ((𝑏𝑑𝑏 ∈ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
115112, 114bitri 275 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
116 ifbi 4511 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒)) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)))
117115, 116ax-mp 5 . . . . . . . . . . . 12 if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅))
118 ringmnd 20152 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
11965, 118syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Mnd)
1201193ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Mnd)
121 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
122973ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ∀𝑖𝑁 𝑋𝐾)
123121, 122, 76syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋𝐾)
124 elequ1 2116 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝑏𝑑𝑒𝑑))
125124biimpac 478 . . . . . . . . . . . . . . 15 ((𝑏𝑑𝑏 = 𝑒) → 𝑒𝑑)
12694, 125nsyl 140 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ (𝑏𝑑𝑏 = 𝑒))
1271263ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ¬ (𝑏𝑑𝑏 = 𝑒))
12845, 35, 62mndifsplit 22523 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ 𝑏 / 𝑖𝑋𝐾 ∧ ¬ (𝑏𝑑𝑏 = 𝑒)) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
129120, 123, 127, 128syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
130117, 129eqtrid 2776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
131105adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏 = 𝑒) → 𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
132131ifeq1da 4520 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
133 ovif2 7488 . . . . . . . . . . . . . . 15 (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅)))
134 eqid 2729 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
13545, 88, 134ringridm 20179 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13665, 99, 135syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13745, 88, 35ringrz 20203 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
13865, 99, 137syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
139136, 138ifeq12d 4510 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
140133, 139eqtrid 2776 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
141132, 140eqtr4d 2767 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))))
142141oveq2d 7403 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
1431423ad2ant1 1133 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
144130, 143eqtrd 2764 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
145144ifeq1d 4508 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))
146145mpoeq3dva 7466 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏))))
147146fveq2d 6862 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))))
14845, 35ring0cl 20176 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐾)
14965, 148syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (0g𝑅) ∈ 𝐾)
1501493ad2ant1 1133 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (0g𝑅) ∈ 𝐾)
151123, 150ifcld 4535 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)) ∈ 𝐾)
15245, 134ringidcl 20174 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
15365, 152syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (1r𝑅) ∈ 𝐾)
154153, 149ifcld 4535 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
15545, 88ringcl 20159 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15665, 99, 154, 155syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
1571563ad2ant1 1133 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15855adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
159158fovcdmda 7560 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
1601593impb 1114 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
16144, 45, 62, 63, 68, 151, 157, 160, 101mdetrlin2 22494 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))))
1621543ad2ant1 1133 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
16344, 45, 88, 63, 68, 162, 160, 99, 101mdetrsca2 22491 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
16447adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀𝐵)
16548, 44, 78, 49, 134, 35maducoeval 22526 . . . . . . . . . . 11 ((𝑀𝐵𝑒𝑁𝐿𝑁) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
166164, 96, 101, 165syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
167166oveq2d 7403 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
168163, 167eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
169168oveq2d 7403 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
170147, 161, 1693eqtrrd 2769 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
171170adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
172109, 111, 1713eqtrd 2768 . . . 4 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
173172ex 412 . . 3 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
1748, 16, 24, 32, 61, 173, 52findcard2d 9130 . 2 (𝜑 → (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
175 nfcv 2891 . . . 4 𝑏(𝑋 · (𝑖(𝐽𝑀)𝐿))
176 nfcsb1v 3886 . . . . 5 𝑖𝑏 / 𝑖𝑋
177 nfcv 2891 . . . . 5 𝑖 ·
178 nfcv 2891 . . . . 5 𝑖(𝑏(𝐽𝑀)𝐿)
179176, 177, 178nfov 7417 . . . 4 𝑖(𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))
180 csbeq1a 3876 . . . . 5 (𝑖 = 𝑏𝑋 = 𝑏 / 𝑖𝑋)
181 oveq1 7394 . . . . 5 (𝑖 = 𝑏 → (𝑖(𝐽𝑀)𝐿) = (𝑏(𝐽𝑀)𝐿))
182180, 181oveq12d 7405 . . . 4 (𝑖 = 𝑏 → (𝑋 · (𝑖(𝐽𝑀)𝐿)) = (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
183175, 179, 182cbvmpt 5209 . . 3 (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
184183oveq2i 7398 . 2 (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
185 nfcv 2891 . . . . 5 𝑎if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
186 nfcv 2891 . . . . 5 𝑏if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
187 nfcv 2891 . . . . 5 𝑗if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
188 nfv 1914 . . . . . 6 𝑖 𝑎 = 𝐿
189 nfcv 2891 . . . . . 6 𝑖(𝑎𝑀𝑏)
190188, 176, 189nfif 4519 . . . . 5 𝑖if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
191 eqeq1 2733 . . . . . . 7 (𝑗 = 𝑎 → (𝑗 = 𝐿𝑎 = 𝐿))
192191adantr 480 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗 = 𝐿𝑎 = 𝐿))
193180adantl 481 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → 𝑋 = 𝑏 / 𝑖𝑋)
194 oveq12 7396 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗𝑀𝑖) = (𝑎𝑀𝑏))
195192, 193, 194ifbieq12d 4517 . . . . 5 ((𝑗 = 𝑎𝑖 = 𝑏) → if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)) = if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
196185, 186, 187, 190, 195cbvmpo 7483 . . . 4 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
197 iftrue 4494 . . . . . . . 8 (𝑏𝑁 → if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)) = 𝑏 / 𝑖𝑋)
198197eqcomd 2735 . . . . . . 7 (𝑏𝑁𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
199198adantl 481 . . . . . 6 ((𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
200199ifeq1d 4508 . . . . 5 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
201200mpoeq3ia 7467 . . . 4 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
202196, 201eqtri 2752 . . 3 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
203202fveq2i 6861 . 2 (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
204174, 184, 2033eqtr4g 2789 1 (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  csb 3862  cdif 3911  cun 3912  wss 3914  c0 4296  ifcif 4488  {csn 4589  cmpt 5188   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Fincfn 8918  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  CMndccmn 19710  1rcur 20090  Ringcrg 20142  CRingccrg 20143   Mat cmat 22294   maDet cmdat 22471   maAdju cmadu 22519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-dsmm 21641  df-frlm 21656  df-mat 22295  df-mdet 22472  df-madu 22521
This theorem is referenced by:  madurid  22531  mdetlap1  33816
  Copyright terms: Public domain W3C validator