Proof of Theorem mulmarep1gsum1
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑅 ∈ Ring) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 3 | | simp2 1137 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) |
| 5 | | simp1 1136 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾) → 𝐼 ∈ 𝑁) |
| 6 | 5 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝐼 ∈ 𝑁) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
| 8 | | simp2 1137 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾) → 𝐽 ∈ 𝑁) |
| 9 | 8 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝐽 ∈ 𝑁) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
| 11 | | simpr 484 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) |
| 12 | | marepvcl.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 13 | | marepvcl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 14 | | marepvcl.v |
. . . . . 6
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| 15 | | ma1repvcl.1 |
. . . . . 6
⊢ 1 =
(1r‘𝐴) |
| 16 | | mulmarep1el.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 17 | | mulmarep1el.e |
. . . . . 6
⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
| 18 | 12, 13, 14, 15, 16, 17 | mulmarep1el 22515 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁)) → ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) |
| 19 | 2, 4, 7, 10, 11, 18 | syl113anc 1384 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) |
| 20 | 19 | mpteq2dva 5219 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽))) = (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))) |
| 21 | 20 | oveq2d 7426 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))))) |
| 22 | | neneq 2939 |
. . . . . . 7
⊢ (𝐽 ≠ 𝐾 → ¬ 𝐽 = 𝐾) |
| 23 | 22 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾) → ¬ 𝐽 = 𝐾) |
| 24 | 23 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → ¬ 𝐽 = 𝐾) |
| 25 | 24 | iffalsed 4516 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) |
| 26 | 25 | mpteq2dv 5220 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) = (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) |
| 27 | 26 | oveq2d 7426 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))) |
| 28 | | ringmnd 20208 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 29 | 28 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑅 ∈ Mnd) |
| 30 | 12, 13 | matrcl 22355 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 31 | 30 | simpld 494 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 32 | 31 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 33 | 32 | 3ad2ant2 1134 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑁 ∈ Fin) |
| 34 | | eqcom 2743 |
. . . . 5
⊢ (𝐽 = 𝑙 ↔ 𝑙 = 𝐽) |
| 35 | | ifbi 4528 |
. . . . . 6
⊢ ((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) → if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝑙), 0 )) |
| 36 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑙 = 𝐽 → (𝐼𝑋𝑙) = (𝐼𝑋𝐽)) |
| 37 | 36 | adantl 481 |
. . . . . . 7
⊢ (((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) ∧ 𝑙 = 𝐽) → (𝐼𝑋𝑙) = (𝐼𝑋𝐽)) |
| 38 | 37 | ifeq1da 4537 |
. . . . . 6
⊢ ((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) → if(𝑙 = 𝐽, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 )) |
| 39 | 35, 38 | eqtrd 2771 |
. . . . 5
⊢ ((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) → if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 )) |
| 40 | 34, 39 | ax-mp 5 |
. . . 4
⊢ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 ) |
| 41 | 40 | mpteq2i 5222 |
. . 3
⊢ (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = (𝑙 ∈ 𝑁 ↦ if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 )) |
| 42 | 13 | eleq2i 2827 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
| 43 | 42 | biimpi 216 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
| 44 | 43 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 45 | 44 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑋 ∈ (Base‘𝐴)) |
| 46 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 47 | 12, 46 | matecl 22368 |
. . . 4
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅)) |
| 48 | 6, 9, 45, 47 | syl3anc 1373 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅)) |
| 49 | 16, 29, 33, 9, 41, 48 | gsummptif1n0 19952 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) = (𝐼𝑋𝐽)) |
| 50 | 21, 27, 49 | 3eqtrd 2775 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽)) |