Proof of Theorem mulmarep1gsum1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑅 ∈ Ring) | 
| 2 | 1 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Ring) | 
| 3 |  | simp2 1137 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) | 
| 4 | 3 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) | 
| 5 |  | simp1 1136 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾) → 𝐼 ∈ 𝑁) | 
| 6 | 5 | 3ad2ant3 1135 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝐼 ∈ 𝑁) | 
| 7 | 6 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝐼 ∈ 𝑁) | 
| 8 |  | simp2 1137 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾) → 𝐽 ∈ 𝑁) | 
| 9 | 8 | 3ad2ant3 1135 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝐽 ∈ 𝑁) | 
| 10 | 9 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝐽 ∈ 𝑁) | 
| 11 |  | simpr 484 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) | 
| 12 |  | marepvcl.a | . . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 13 |  | marepvcl.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐴) | 
| 14 |  | marepvcl.v | . . . . . 6
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | 
| 15 |  | ma1repvcl.1 | . . . . . 6
⊢  1 =
(1r‘𝐴) | 
| 16 |  | mulmarep1el.0 | . . . . . 6
⊢  0 =
(0g‘𝑅) | 
| 17 |  | mulmarep1el.e | . . . . . 6
⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | 
| 18 | 12, 13, 14, 15, 16, 17 | mulmarep1el 22579 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁)) → ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) | 
| 19 | 2, 4, 7, 10, 11, 18 | syl113anc 1383 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) ∧ 𝑙 ∈ 𝑁) → ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) | 
| 20 | 19 | mpteq2dva 5241 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽))) = (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))) | 
| 21 | 20 | oveq2d 7448 | . 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))))) | 
| 22 |  | neneq 2945 | . . . . . . 7
⊢ (𝐽 ≠ 𝐾 → ¬ 𝐽 = 𝐾) | 
| 23 | 22 | 3ad2ant3 1135 | . . . . . 6
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾) → ¬ 𝐽 = 𝐾) | 
| 24 | 23 | 3ad2ant3 1135 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → ¬ 𝐽 = 𝐾) | 
| 25 | 24 | iffalsed 4535 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) | 
| 26 | 25 | mpteq2dv 5243 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) = (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) | 
| 27 | 26 | oveq2d 7448 | . 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))) | 
| 28 |  | ringmnd 20241 | . . . 4
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | 
| 29 | 28 | 3ad2ant1 1133 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑅 ∈ Mnd) | 
| 30 | 12, 13 | matrcl 22417 | . . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | 
| 31 | 30 | simpld 494 | . . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) | 
| 32 | 31 | 3ad2ant1 1133 | . . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) | 
| 33 | 32 | 3ad2ant2 1134 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑁 ∈ Fin) | 
| 34 |  | eqcom 2743 | . . . . 5
⊢ (𝐽 = 𝑙 ↔ 𝑙 = 𝐽) | 
| 35 |  | ifbi 4547 | . . . . . 6
⊢ ((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) → if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝑙), 0 )) | 
| 36 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑙 = 𝐽 → (𝐼𝑋𝑙) = (𝐼𝑋𝐽)) | 
| 37 | 36 | adantl 481 | . . . . . . 7
⊢ (((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) ∧ 𝑙 = 𝐽) → (𝐼𝑋𝑙) = (𝐼𝑋𝐽)) | 
| 38 | 37 | ifeq1da 4556 | . . . . . 6
⊢ ((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) → if(𝑙 = 𝐽, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 )) | 
| 39 | 35, 38 | eqtrd 2776 | . . . . 5
⊢ ((𝐽 = 𝑙 ↔ 𝑙 = 𝐽) → if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 )) | 
| 40 | 34, 39 | ax-mp 5 | . . . 4
⊢ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ) = if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 ) | 
| 41 | 40 | mpteq2i 5246 | . . 3
⊢ (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = (𝑙 ∈ 𝑁 ↦ if(𝑙 = 𝐽, (𝐼𝑋𝐽), 0 )) | 
| 42 | 13 | eleq2i 2832 | . . . . . . 7
⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) | 
| 43 | 42 | biimpi 216 | . . . . . 6
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) | 
| 44 | 43 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) | 
| 45 | 44 | 3ad2ant2 1134 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → 𝑋 ∈ (Base‘𝐴)) | 
| 46 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 47 | 12, 46 | matecl 22432 | . . . 4
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅)) | 
| 48 | 6, 9, 45, 47 | syl3anc 1372 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅)) | 
| 49 | 16, 29, 33, 9, 41, 48 | gsummptif1n0 19985 | . 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) = (𝐼𝑋𝐽)) | 
| 50 | 21, 27, 49 | 3eqtrd 2780 | 1
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽)) |