MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdi Structured version   Visualization version   GIF version

Theorem lgsdi 25918
Description: The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsdi (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdi
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 1097 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 lgsdilem 25908 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)))
31, 2sylanb 584 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)))
4 ancom 464 . . . . 5 (((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ (𝑀 · 𝑁) < 0))
5 ifbi 4446 . . . . 5 ((((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ (𝑀 · 𝑁) < 0)) → if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1))
64, 5ax-mp 5 . . . 4 if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1)
7 ancom 464 . . . . . 6 ((𝑀 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑀 < 0))
8 ifbi 4446 . . . . . 6 (((𝑀 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑀 < 0)) → if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1))
97, 8ax-mp 5 . . . . 5 if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1)
10 ancom 464 . . . . . 6 ((𝑁 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑁 < 0))
11 ifbi 4446 . . . . . 6 (((𝑁 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑁 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1))
1210, 11ax-mp 5 . . . . 5 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)
139, 12oveq12i 7147 . . . 4 (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1))
143, 6, 133eqtr4g 2858 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
15 simpl2 1189 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℤ)
16 simpl3 1190 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
1715, 16zmulcld 12081 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ)
1815zcnd 12076 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℂ)
1916zcnd 12076 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
20 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ≠ 0)
21 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0)
2218, 19, 20, 21mulne0d 11281 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
23 nnabscl 14677 . . . . . . 7 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2417, 22, 23syl2anc 587 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
25 nnuz 12269 . . . . . 6 ℕ = (ℤ‘1)
2624, 25eleqtrdi 2900 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘1))
27 simpl1 1188 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝐴 ∈ ℤ)
28 eqid 2798 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
2928lgsfcl3 25902 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ)
3027, 15, 20, 29syl3anc 1368 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ)
31 elfznn 12931 . . . . . . 7 (𝑘 ∈ (1...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ ℕ)
32 ffvelrn 6826 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
3330, 31, 32syl2an 598 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
3433zcnd 12076 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℂ)
35 eqid 2798 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
3635lgsfcl3 25902 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
3727, 16, 21, 36syl3anc 1368 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
38 ffvelrn 6826 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
3937, 31, 38syl2an 598 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
4039zcnd 12076 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
41 simpr 488 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
4215ad2antrr 725 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
4320ad2antrr 725 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
4416ad2antrr 725 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
4521ad2antrr 725 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
46 pcmul 16178 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt (𝑀 · 𝑁)) = ((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁)))
4741, 42, 43, 44, 45, 46syl122anc 1376 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (𝑀 · 𝑁)) = ((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁)))
4847oveq2d 7151 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) = ((𝐴 /L 𝑘)↑((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁))))
4927ad2antrr 725 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
50 prmz 16009 . . . . . . . . . . . . 13 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
5150adantl 485 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
52 lgscl 25895 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
5349, 51, 52syl2anc 587 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
5453zcnd 12076 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
55 pczcl 16175 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
5641, 44, 45, 55syl12anc 835 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
57 pczcl 16175 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑘 pCnt 𝑀) ∈ ℕ0)
5841, 42, 43, 57syl12anc 835 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) ∈ ℕ0)
5954, 56, 58expaddd 13508 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁))) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
6048, 59eqtrd 2833 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
61 iftrue 4431 . . . . . . . . 9 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
6261adantl 485 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
63 iftrue 4431 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
64 iftrue 4431 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
6563, 64oveq12d 7153 . . . . . . . . 9 (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
6665adantl 485 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
6760, 62, 663eqtr4rd 2844 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
68 1t1e1 11787 . . . . . . . . 9 (1 · 1) = 1
69 iffalse 4434 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
70 iffalse 4434 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
7169, 70oveq12d 7153 . . . . . . . . 9 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1))
72 iffalse 4434 . . . . . . . . 9 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = 1)
7368, 71, 723eqtr4a 2859 . . . . . . . 8 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
7473adantl 485 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ ¬ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
7567, 74pm2.61dan 812 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
7631adantl 485 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℕ)
77 eleq1w 2872 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
78 oveq2 7143 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
79 oveq1 7142 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
8078, 79oveq12d 7153 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
8177, 80ifbieq1d 4448 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
82 ovex 7168 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ V
83 1ex 10626 . . . . . . . . . 10 1 ∈ V
8482, 83ifex 4473 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ V
8581, 28, 84fvmpt 6745 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
86 oveq1 7142 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
8778, 86oveq12d 7153 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
8877, 87ifbieq1d 4448 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
89 ovex 7168 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
9089, 83ifex 4473 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
9188, 35, 90fvmpt 6745 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
9285, 91oveq12d 7153 . . . . . . 7 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
9376, 92syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
94 oveq1 7142 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt (𝑀 · 𝑁)) = (𝑘 pCnt (𝑀 · 𝑁)))
9578, 94oveq12d 7153 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
9677, 95ifbieq1d 4448 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
97 eqid 2798 . . . . . . . 8 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))
98 ovex 7168 . . . . . . . . 9 ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) ∈ V
9998, 83ifex 4473 . . . . . . . 8 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) ∈ V
10096, 97, 99fvmpt 6745 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
10176, 100syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
10275, 93, 1013eqtr4rd 2844 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)))
10326, 34, 40, 102prodfmul 15238 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁)))))
10427, 15, 16, 20, 21, 28lgsdilem2 25917 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))))
10527, 16, 15, 21, 20, 35lgsdilem2 25917 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑁 · 𝑀))))
10618, 19mulcomd 10651 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
107106fveq2d 6649 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑁 · 𝑀)))
108107fveq2d 6649 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑁 · 𝑀))))
109105, 108eqtr4d 2836 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁))))
110104, 109oveq12d 7153 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁)))))
111103, 110eqtr4d 2836 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
11214, 111oveq12d 7153 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
11397lgsval4 25901 . . 3 ((𝐴 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (𝐴 /L (𝑀 · 𝑁)) = (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))))
11427, 17, 22, 113syl3anc 1368 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))))
11528lgsval4 25901 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝐴 /L 𝑀) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))))
11627, 15, 20, 115syl3anc 1368 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L 𝑀) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))))
11735lgsval4 25901 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
11827, 16, 21, 117syl3anc 1368 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
119116, 118oveq12d 7153 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
120 neg1cn 11739 . . . . . 6 -1 ∈ ℂ
121 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
122120, 121ifcli 4471 . . . . 5 if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
123122a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
124 nnabscl 14677 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
12515, 20, 124syl2anc 587 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑀) ∈ ℕ)
126125, 25eleqtrdi 2900 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑀) ∈ (ℤ‘1))
127 elfznn 12931 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑀)) → 𝑘 ∈ ℕ)
12830, 127, 32syl2an 598 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑀))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
129128zcnd 12076 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑀))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℂ)
130 mulcl 10610 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
131130adantl 485 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
132126, 129, 131seqcl 13386 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) ∈ ℂ)
133120, 121ifcli 4471 . . . . 5 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
134133a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
135 nnabscl 14677 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
13616, 21, 135syl2anc 587 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℕ)
137136, 25eleqtrdi 2900 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ (ℤ‘1))
138 elfznn 12931 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ)
13937, 138, 38syl2an 598 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
140139zcnd 12076 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
141137, 140, 131seqcl 13386 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
142123, 132, 134, 141mul4d 10841 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
143119, 142eqtrd 2833 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
144112, 114, 1433eqtr4d 2843 1 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  ifcif 4425   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  -cneg 10860  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cexp 13425  abscabs 14585  cprime 16005   pCnt cpc 16163   /L clgs 25878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-lgs 25879
This theorem is referenced by:  lgssq2  25922  lgsdinn0  25929  lgsquad2lem1  25968
  Copyright terms: Public domain W3C validator