MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdi Structured version   Visualization version   GIF version

Theorem lgsdi 27252
Description: The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsdi (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))

Proof of Theorem lgsdi
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 1099 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 lgsdilem 27242 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)))
31, 2sylanb 581 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)))
4 ancom 460 . . . . 5 (((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ (𝑀 · 𝑁) < 0))
5 ifbi 4514 . . . . 5 ((((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ (𝑀 · 𝑁) < 0)) → if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1))
64, 5ax-mp 5 . . . 4 if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ (𝑀 · 𝑁) < 0), -1, 1)
7 ancom 460 . . . . . 6 ((𝑀 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑀 < 0))
8 ifbi 4514 . . . . . 6 (((𝑀 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑀 < 0)) → if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1))
97, 8ax-mp 5 . . . . 5 if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1)
10 ancom 460 . . . . . 6 ((𝑁 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑁 < 0))
11 ifbi 4514 . . . . . 6 (((𝑁 < 0 ∧ 𝐴 < 0) ↔ (𝐴 < 0 ∧ 𝑁 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1))
1210, 11ax-mp 5 . . . . 5 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1)
139, 12oveq12i 7402 . . . 4 (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (if((𝐴 < 0 ∧ 𝑀 < 0), -1, 1) · if((𝐴 < 0 ∧ 𝑁 < 0), -1, 1))
143, 6, 133eqtr4g 2790 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
15 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℤ)
16 simpl3 1194 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
1715, 16zmulcld 12651 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ)
1815zcnd 12646 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℂ)
1916zcnd 12646 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
20 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑀 ≠ 0)
21 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0)
2218, 19, 20, 21mulne0d 11837 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
23 nnabscl 15299 . . . . . . 7 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2417, 22, 23syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
25 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
2624, 25eleqtrdi 2839 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘1))
27 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → 𝐴 ∈ ℤ)
28 eqid 2730 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
2928lgsfcl3 27236 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ)
3027, 15, 20, 29syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ)
31 elfznn 13521 . . . . . . 7 (𝑘 ∈ (1...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ ℕ)
32 ffvelcdm 7056 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
3330, 31, 32syl2an 596 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
3433zcnd 12646 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℂ)
35 eqid 2730 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
3635lgsfcl3 27236 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
3727, 16, 21, 36syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
38 ffvelcdm 7056 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
3937, 31, 38syl2an 596 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
4039zcnd 12646 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
41 simpr 484 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
4215ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
4320ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
4416ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
4521ad2antrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
46 pcmul 16829 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt (𝑀 · 𝑁)) = ((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁)))
4741, 42, 43, 44, 45, 46syl122anc 1381 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (𝑀 · 𝑁)) = ((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁)))
4847oveq2d 7406 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) = ((𝐴 /L 𝑘)↑((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁))))
4927ad2antrr 726 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
50 prmz 16652 . . . . . . . . . . . . 13 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
5150adantl 481 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
52 lgscl 27229 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
5349, 51, 52syl2anc 584 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
5453zcnd 12646 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
55 pczcl 16826 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
5641, 44, 45, 55syl12anc 836 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
57 pczcl 16826 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑘 pCnt 𝑀) ∈ ℕ0)
5841, 42, 43, 57syl12anc 836 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) ∈ ℕ0)
5954, 56, 58expaddd 14120 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑((𝑘 pCnt 𝑀) + (𝑘 pCnt 𝑁))) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
6048, 59eqtrd 2765 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
61 iftrue 4497 . . . . . . . . 9 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
6261adantl 481 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
63 iftrue 4497 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
64 iftrue 4497 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
6563, 64oveq12d 7408 . . . . . . . . 9 (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
6665adantl 481 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) · ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))))
6760, 62, 663eqtr4rd 2776 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
68 1t1e1 12350 . . . . . . . . 9 (1 · 1) = 1
69 iffalse 4500 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
70 iffalse 4500 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
7169, 70oveq12d 7408 . . . . . . . . 9 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1))
72 iffalse 4500 . . . . . . . . 9 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) = 1)
7368, 71, 723eqtr4a 2791 . . . . . . . 8 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
7473adantl 481 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) ∧ ¬ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
7567, 74pm2.61dan 812 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
7631adantl 481 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℕ)
77 eleq1w 2812 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
78 oveq2 7398 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
79 oveq1 7397 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
8078, 79oveq12d 7408 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
8177, 80ifbieq1d 4516 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
82 ovex 7423 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ V
83 1ex 11177 . . . . . . . . . 10 1 ∈ V
8482, 83ifex 4542 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ V
8581, 28, 84fvmpt 6971 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
86 oveq1 7397 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
8778, 86oveq12d 7408 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
8877, 87ifbieq1d 4516 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
89 ovex 7423 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
9089, 83ifex 4542 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
9188, 35, 90fvmpt 6971 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
9285, 91oveq12d 7408 . . . . . . 7 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
9376, 92syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) · if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
94 oveq1 7397 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt (𝑀 · 𝑁)) = (𝑘 pCnt (𝑀 · 𝑁)))
9578, 94oveq12d 7408 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))) = ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))))
9677, 95ifbieq1d 4516 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
97 eqid 2730 . . . . . . . 8 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))
98 ovex 7423 . . . . . . . . 9 ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))) ∈ V
9998, 83ifex 4542 . . . . . . . 8 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1) ∈ V
10096, 97, 99fvmpt 6971 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
10176, 100syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt (𝑀 · 𝑁))), 1))
10275, 93, 1013eqtr4rd 2776 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘(𝑀 · 𝑁)))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)))
10326, 34, 40, 102prodfmul 15863 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁)))))
10427, 15, 16, 20, 21, 28lgsdilem2 27251 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))))
10527, 16, 15, 21, 20, 35lgsdilem2 27251 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑁 · 𝑀))))
10618, 19mulcomd 11202 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
107106fveq2d 6865 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘(𝑀 · 𝑁)) = (abs‘(𝑁 · 𝑀)))
108107fveq2d 6865 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑁 · 𝑀))))
109105, 108eqtr4d 2768 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁))))
110104, 109oveq12d 7408 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘(𝑀 · 𝑁))) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘(𝑀 · 𝑁)))))
111103, 110eqtr4d 2768 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
11214, 111oveq12d 7408 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
11397lgsval4 27235 . . 3 ((𝐴 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (𝐴 /L (𝑀 · 𝑁)) = (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))))
11427, 17, 22, 113syl3anc 1373 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = (if(((𝑀 · 𝑁) < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt (𝑀 · 𝑁))), 1)))‘(abs‘(𝑀 · 𝑁)))))
11528lgsval4 27235 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝐴 /L 𝑀) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))))
11627, 15, 20, 115syl3anc 1373 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L 𝑀) = (if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))))
11735lgsval4 27235 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
11827, 16, 21, 117syl3anc 1373 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
119116, 118oveq12d 7408 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
120 neg1cn 12178 . . . . . 6 -1 ∈ ℂ
121 ax-1cn 11133 . . . . . 6 1 ∈ ℂ
122120, 121ifcli 4539 . . . . 5 if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
123122a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
124 nnabscl 15299 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
12515, 20, 124syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑀) ∈ ℕ)
126125, 25eleqtrdi 2839 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑀) ∈ (ℤ‘1))
127 elfznn 13521 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑀)) → 𝑘 ∈ ℕ)
12830, 127, 32syl2an 596 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑀))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℤ)
129128zcnd 12646 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑀))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))‘𝑘) ∈ ℂ)
130 mulcl 11159 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
131130adantl 481 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
132126, 129, 131seqcl 13994 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) ∈ ℂ)
133120, 121ifcli 4539 . . . . 5 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
134133a1i 11 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
135 nnabscl 15299 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
13616, 21, 135syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℕ)
137136, 25eleqtrdi 2839 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ (ℤ‘1))
138 elfznn 13521 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ)
13937, 138, 38syl2an 596 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
140139zcnd 12646 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
141137, 140, 131seqcl 13994 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
142123, 132, 134, 141mul4d 11393 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀))) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
143119, 142eqtrd 2765 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)) = ((if((𝑀 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)))‘(abs‘𝑀)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
144112, 114, 1433eqtr4d 2775 1 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  ifcif 4491   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  -cneg 11413  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cexp 14033  abscabs 15207  cprime 16648   pCnt cpc 16814   /L clgs 27212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-pc 16815  df-lgs 27213
This theorem is referenced by:  lgssq2  27256  lgsdinn0  27263  lgsquad2lem1  27302
  Copyright terms: Public domain W3C validator