MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscm Structured version   Visualization version   GIF version

Theorem scmatscm 21862
Description: The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019.)
Hypotheses
Ref Expression
scmatscm.k 𝐾 = (Base‘𝑅)
scmatscm.a 𝐴 = (𝑁 Mat 𝑅)
scmatscm.b 𝐵 = (Base‘𝐴)
scmatscm.t = ( ·𝑠𝐴)
scmatscm.m × = (.r𝐴)
scmatscm.c 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscm (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Distinct variable groups:   𝐴,𝑚   𝐶,𝑐,𝑚   𝐾,𝑐,𝑚   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚   𝑆,𝑐,𝑚   ,𝑚
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑚,𝑐)   × (𝑚,𝑐)   (𝑐)

Proof of Theorem scmatscm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatscm.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatscm.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatscm.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2736 . . . 4 (1r𝐴) = (1r𝐴)
5 scmatscm.t . . . 4 = ( ·𝑠𝐴)
6 scmatscm.c . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 21855 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
873expa 1118 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
9 oveq1 7364 . . . . . 6 (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = ((𝑐 (1r𝐴)) × 𝑚))
10 simpr 485 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1110ad4antr 730 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
12 simpl 483 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1312adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
142matring 21792 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
153, 4ringidcl 19989 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
1716adantr 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (1r𝐴) ∈ 𝐵)
1817anim1ci 616 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵))
191, 2, 3, 5matvscl 21780 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵)) → (𝑐 (1r𝐴)) ∈ 𝐵)
2013, 18, 19syl2anc 584 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) ∈ 𝐵)
2120anim1i 615 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
2221adantr 481 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
23 simpr 485 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
24 scmatscm.m . . . . . . . . . . . 12 × = (.r𝐴)
252, 3, 24matmulcell 21794 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2611, 22, 23, 25syl3anc 1371 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2712anim1i 615 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
28 df-3an 1089 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
2927, 28sylibr 233 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
3029ad3antrrr 728 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
31 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
322, 1, 5, 31matsc 21799 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
3330, 32syl 17 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
34 eqeq12 2753 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑖𝑦 = 𝑘) → (𝑥 = 𝑦𝑖 = 𝑘))
3534ifbid 4509 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑖𝑦 = 𝑘) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
3635adantl 482 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑘)) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
37 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3837adantl 482 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
3938adantr 481 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
40 simpr 485 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
41 vex 3449 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
42 fvex 6855 . . . . . . . . . . . . . . . . 17 (0g𝑅) ∈ V
4341, 42ifex 4536 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V)
4533, 36, 39, 40, 44ovmpod 7507 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖(𝑐 (1r𝐴))𝑘) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
4645oveq1d 7372 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)) = (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))
4746mpteq2dva 5205 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))))
4847oveq2d 7373 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))))
49 ovif 7454 . . . . . . . . . . . . . 14 (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)))
50 simp-6r 786 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
51 simplrr 776 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
52 simpr 485 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝑚𝐵)
5352ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑚𝐵)
542, 1, 3, 40, 51, 53matecld 21775 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ 𝐾)
55 eqid 2736 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
561, 55, 31ringlz 20011 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑘𝑚𝑗) ∈ 𝐾) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5750, 54, 56syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5857ifeq2d 4506 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗))) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
5949, 58eqtrid 2788 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6059mpteq2dva 5205 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))))
6160oveq2d 7373 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))))
62 ringmnd 19974 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6362adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Mnd)
6463ad4antr 730 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Mnd)
65 simpl 483 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
6665ad4antr 730 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
67 equcom 2021 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
68 ifbi 4508 . . . . . . . . . . . . . 14 ((𝑖 = 𝑘𝑘 = 𝑖) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6967, 68ax-mp 5 . . . . . . . . . . . . 13 if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))
7069mpteq2i 5210 . . . . . . . . . . . 12 (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))) = (𝑘𝑁 ↦ if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
711eleq2i 2829 . . . . . . . . . . . . . . . . 17 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7271biimpi 215 . . . . . . . . . . . . . . . 16 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7372adantl 482 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐 ∈ (Base‘𝑅))
7473ad3antrrr 728 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑐 ∈ (Base‘𝑅))
75 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
762, 75, 3, 40, 51, 53matecld 21775 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ (Base‘𝑅))
7775, 55ringcl 19981 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ (𝑘𝑚𝑗) ∈ (Base‘𝑅)) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7850, 74, 76, 77syl3anc 1371 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7978ralrimiva 3143 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
8031, 64, 66, 38, 70, 79gsummpt1n0 19742 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
8148, 61, 803eqtrd 2780 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
82 csbov2g 7403 . . . . . . . . . . . . 13 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)))
83 csbov1g 7402 . . . . . . . . . . . . . . 15 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖 / 𝑘𝑘𝑚𝑗))
84 csbvarg 4391 . . . . . . . . . . . . . . . 16 (𝑖𝑁𝑖 / 𝑘𝑘 = 𝑖)
8584oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑖𝑁 → (𝑖 / 𝑘𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8683, 85eqtrd 2776 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8786oveq2d 7373 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8882, 87eqtrd 2776 . . . . . . . . . . . 12 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8988adantr 481 . . . . . . . . . . 11 ((𝑖𝑁𝑗𝑁) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9089adantl 482 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9126, 81, 903eqtrd 2780 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
92 simpr 485 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐𝐾)
9392anim1i 615 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐𝐾𝑚𝐵))
9493adantr 481 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐𝐾𝑚𝐵))
952, 3, 1, 5, 55matvscacell 21785 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑐𝐾𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9611, 94, 23, 95syl3anc 1371 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9791, 96eqtr4d 2779 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9897ralrimivva 3197 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9914ad3antrrr 728 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝐴 ∈ Ring)
10020adantr 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 (1r𝐴)) ∈ 𝐵)
1013, 24ringcl 19981 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10299, 100, 52, 101syl3anc 1371 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10312ad2antrr 724 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1041, 2, 3, 5matvscl 21780 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾𝑚𝐵)) → (𝑐 𝑚) ∈ 𝐵)
105103, 93, 104syl2anc 584 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 𝑚) ∈ 𝐵)
1062, 3eqmat 21773 . . . . . . . 8 ((((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵 ∧ (𝑐 𝑚) ∈ 𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
107102, 105, 106syl2anc 584 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
10898, 107mpbird 256 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚))
1099, 108sylan9eqr 2798 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ 𝐶 = (𝑐 (1r𝐴))) → (𝐶 × 𝑚) = (𝑐 𝑚))
110109ex 413 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = (𝑐 𝑚)))
111110ralrimdva 3151 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝐶 = (𝑐 (1r𝐴)) → ∀𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
112111reximdva 3165 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
1138, 112mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  csb 3855  ifcif 4486  cmpt 5188  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  Basecbs 17083  .rcmulr 17134   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  1rcur 19913  Ringcrg 19964   Mat cmat 21754   ScMat cscmat 21838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mamu 21733  df-mat 21755  df-scmat 21840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator