MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscm Structured version   Visualization version   GIF version

Theorem scmatscm 22421
Description: The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019.)
Hypotheses
Ref Expression
scmatscm.k 𝐾 = (Base‘𝑅)
scmatscm.a 𝐴 = (𝑁 Mat 𝑅)
scmatscm.b 𝐵 = (Base‘𝐴)
scmatscm.t = ( ·𝑠𝐴)
scmatscm.m × = (.r𝐴)
scmatscm.c 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscm (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Distinct variable groups:   𝐴,𝑚   𝐶,𝑐,𝑚   𝐾,𝑐,𝑚   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚   𝑆,𝑐,𝑚   ,𝑚
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑚,𝑐)   × (𝑚,𝑐)   (𝑐)

Proof of Theorem scmatscm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatscm.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatscm.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatscm.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2730 . . . 4 (1r𝐴) = (1r𝐴)
5 scmatscm.t . . . 4 = ( ·𝑠𝐴)
6 scmatscm.c . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 22414 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
873expa 1118 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
9 oveq1 7348 . . . . . 6 (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = ((𝑐 (1r𝐴)) × 𝑚))
10 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1110ad4antr 732 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
12 simpl 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1312adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
142matring 22351 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
153, 4ringidcl 20176 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
1716adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (1r𝐴) ∈ 𝐵)
1817anim1ci 616 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵))
191, 2, 3, 5matvscl 22339 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵)) → (𝑐 (1r𝐴)) ∈ 𝐵)
2013, 18, 19syl2anc 584 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) ∈ 𝐵)
2120anim1i 615 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
2221adantr 480 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
23 simpr 484 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
24 scmatscm.m . . . . . . . . . . . 12 × = (.r𝐴)
252, 3, 24matmulcell 22353 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2611, 22, 23, 25syl3anc 1373 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2712anim1i 615 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
28 df-3an 1088 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
2927, 28sylibr 234 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
3029ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
31 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
322, 1, 5, 31matsc 22358 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
3330, 32syl 17 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
34 eqeq12 2747 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑖𝑦 = 𝑘) → (𝑥 = 𝑦𝑖 = 𝑘))
3534ifbid 4497 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑖𝑦 = 𝑘) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
3635adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑘)) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
37 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3837adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
3938adantr 480 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
40 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
41 vex 3438 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
42 fvex 6830 . . . . . . . . . . . . . . . . 17 (0g𝑅) ∈ V
4341, 42ifex 4524 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V)
4533, 36, 39, 40, 44ovmpod 7493 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖(𝑐 (1r𝐴))𝑘) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
4645oveq1d 7356 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)) = (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))
4746mpteq2dva 5182 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))))
4847oveq2d 7357 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))))
49 ovif 7439 . . . . . . . . . . . . . 14 (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)))
50 simp-6r 787 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
51 simplrr 777 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
52 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝑚𝐵)
5352ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑚𝐵)
542, 1, 3, 40, 51, 53matecld 22334 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ 𝐾)
55 eqid 2730 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
561, 55, 31ringlz 20204 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑘𝑚𝑗) ∈ 𝐾) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5750, 54, 56syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5857ifeq2d 4494 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗))) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
5949, 58eqtrid 2777 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6059mpteq2dva 5182 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))))
6160oveq2d 7357 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))))
62 ringmnd 20154 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6362adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Mnd)
6463ad4antr 732 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Mnd)
65 simpl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
6665ad4antr 732 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
67 equcom 2019 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
68 ifbi 4496 . . . . . . . . . . . . . 14 ((𝑖 = 𝑘𝑘 = 𝑖) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6967, 68ax-mp 5 . . . . . . . . . . . . 13 if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))
7069mpteq2i 5185 . . . . . . . . . . . 12 (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))) = (𝑘𝑁 ↦ if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
711eleq2i 2821 . . . . . . . . . . . . . . . . 17 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7271biimpi 216 . . . . . . . . . . . . . . . 16 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7372adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐 ∈ (Base‘𝑅))
7473ad3antrrr 730 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑐 ∈ (Base‘𝑅))
75 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
762, 75, 3, 40, 51, 53matecld 22334 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ (Base‘𝑅))
7775, 55ringcl 20161 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ (𝑘𝑚𝑗) ∈ (Base‘𝑅)) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7850, 74, 76, 77syl3anc 1373 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7978ralrimiva 3122 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
8031, 64, 66, 38, 70, 79gsummpt1n0 19870 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
8148, 61, 803eqtrd 2769 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
82 csbov2g 7389 . . . . . . . . . . . . 13 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)))
83 csbov1g 7388 . . . . . . . . . . . . . . 15 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖 / 𝑘𝑘𝑚𝑗))
84 csbvarg 4382 . . . . . . . . . . . . . . . 16 (𝑖𝑁𝑖 / 𝑘𝑘 = 𝑖)
8584oveq1d 7356 . . . . . . . . . . . . . . 15 (𝑖𝑁 → (𝑖 / 𝑘𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8683, 85eqtrd 2765 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8786oveq2d 7357 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8882, 87eqtrd 2765 . . . . . . . . . . . 12 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8988adantr 480 . . . . . . . . . . 11 ((𝑖𝑁𝑗𝑁) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9089adantl 481 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9126, 81, 903eqtrd 2769 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
92 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐𝐾)
9392anim1i 615 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐𝐾𝑚𝐵))
9493adantr 480 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐𝐾𝑚𝐵))
952, 3, 1, 5, 55matvscacell 22344 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑐𝐾𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9611, 94, 23, 95syl3anc 1373 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9791, 96eqtr4d 2768 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9897ralrimivva 3173 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9914ad3antrrr 730 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝐴 ∈ Ring)
10020adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 (1r𝐴)) ∈ 𝐵)
1013, 24ringcl 20161 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10299, 100, 52, 101syl3anc 1373 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10312ad2antrr 726 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1041, 2, 3, 5matvscl 22339 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾𝑚𝐵)) → (𝑐 𝑚) ∈ 𝐵)
105103, 93, 104syl2anc 584 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 𝑚) ∈ 𝐵)
1062, 3eqmat 22332 . . . . . . . 8 ((((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵 ∧ (𝑐 𝑚) ∈ 𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
107102, 105, 106syl2anc 584 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
10898, 107mpbird 257 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚))
1099, 108sylan9eqr 2787 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ 𝐶 = (𝑐 (1r𝐴))) → (𝐶 × 𝑚) = (𝑐 𝑚))
110109ex 412 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = (𝑐 𝑚)))
111110ralrimdva 3130 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝐶 = (𝑐 (1r𝐴)) → ∀𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
112111reximdva 3143 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
1138, 112mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  wrex 3054  Vcvv 3434  csb 3848  ifcif 4473  cmpt 5170  cfv 6477  (class class class)co 7341  cmpo 7343  Fincfn 8864  Basecbs 17112  .rcmulr 17154   ·𝑠 cvsca 17157  0gc0g 17335   Σg cgsu 17336  Mndcmnd 18634  1rcur 20092  Ringcrg 20144   Mat cmat 22315   ScMat cscmat 22397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-subrg 20478  df-lmod 20788  df-lss 20858  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-mamu 22299  df-mat 22316  df-scmat 22399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator