MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscm Structured version   Visualization version   GIF version

Theorem scmatscm 22540
Description: The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019.)
Hypotheses
Ref Expression
scmatscm.k 𝐾 = (Base‘𝑅)
scmatscm.a 𝐴 = (𝑁 Mat 𝑅)
scmatscm.b 𝐵 = (Base‘𝐴)
scmatscm.t = ( ·𝑠𝐴)
scmatscm.m × = (.r𝐴)
scmatscm.c 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscm (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Distinct variable groups:   𝐴,𝑚   𝐶,𝑐,𝑚   𝐾,𝑐,𝑚   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚   𝑆,𝑐,𝑚   ,𝑚
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑚,𝑐)   × (𝑚,𝑐)   (𝑐)

Proof of Theorem scmatscm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatscm.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatscm.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatscm.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2740 . . . 4 (1r𝐴) = (1r𝐴)
5 scmatscm.t . . . 4 = ( ·𝑠𝐴)
6 scmatscm.c . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 22533 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
873expa 1118 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
9 oveq1 7455 . . . . . 6 (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = ((𝑐 (1r𝐴)) × 𝑚))
10 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1110ad4antr 731 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
12 simpl 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1312adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
142matring 22470 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
153, 4ringidcl 20289 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
1716adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (1r𝐴) ∈ 𝐵)
1817anim1ci 615 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵))
191, 2, 3, 5matvscl 22458 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵)) → (𝑐 (1r𝐴)) ∈ 𝐵)
2013, 18, 19syl2anc 583 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) ∈ 𝐵)
2120anim1i 614 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
2221adantr 480 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
23 simpr 484 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
24 scmatscm.m . . . . . . . . . . . 12 × = (.r𝐴)
252, 3, 24matmulcell 22472 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2611, 22, 23, 25syl3anc 1371 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2712anim1i 614 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
28 df-3an 1089 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
2927, 28sylibr 234 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
3029ad3antrrr 729 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
31 eqid 2740 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
322, 1, 5, 31matsc 22477 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
3330, 32syl 17 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
34 eqeq12 2757 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑖𝑦 = 𝑘) → (𝑥 = 𝑦𝑖 = 𝑘))
3534ifbid 4571 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑖𝑦 = 𝑘) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
3635adantl 481 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑘)) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
37 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3837adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
3938adantr 480 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
40 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
41 vex 3492 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
42 fvex 6933 . . . . . . . . . . . . . . . . 17 (0g𝑅) ∈ V
4341, 42ifex 4598 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V)
4533, 36, 39, 40, 44ovmpod 7602 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖(𝑐 (1r𝐴))𝑘) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
4645oveq1d 7463 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)) = (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))
4746mpteq2dva 5266 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))))
4847oveq2d 7464 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))))
49 ovif 7548 . . . . . . . . . . . . . 14 (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)))
50 simp-6r 787 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
51 simplrr 777 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
52 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝑚𝐵)
5352ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑚𝐵)
542, 1, 3, 40, 51, 53matecld 22453 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ 𝐾)
55 eqid 2740 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
561, 55, 31ringlz 20316 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑘𝑚𝑗) ∈ 𝐾) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5750, 54, 56syl2anc 583 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5857ifeq2d 4568 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗))) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
5949, 58eqtrid 2792 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6059mpteq2dva 5266 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))))
6160oveq2d 7464 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))))
62 ringmnd 20270 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6362adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Mnd)
6463ad4antr 731 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Mnd)
65 simpl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
6665ad4antr 731 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
67 equcom 2017 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
68 ifbi 4570 . . . . . . . . . . . . . 14 ((𝑖 = 𝑘𝑘 = 𝑖) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6967, 68ax-mp 5 . . . . . . . . . . . . 13 if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))
7069mpteq2i 5271 . . . . . . . . . . . 12 (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))) = (𝑘𝑁 ↦ if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
711eleq2i 2836 . . . . . . . . . . . . . . . . 17 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7271biimpi 216 . . . . . . . . . . . . . . . 16 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7372adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐 ∈ (Base‘𝑅))
7473ad3antrrr 729 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑐 ∈ (Base‘𝑅))
75 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
762, 75, 3, 40, 51, 53matecld 22453 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ (Base‘𝑅))
7775, 55ringcl 20277 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ (𝑘𝑚𝑗) ∈ (Base‘𝑅)) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7850, 74, 76, 77syl3anc 1371 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7978ralrimiva 3152 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
8031, 64, 66, 38, 70, 79gsummpt1n0 20007 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
8148, 61, 803eqtrd 2784 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
82 csbov2g 7496 . . . . . . . . . . . . 13 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)))
83 csbov1g 7495 . . . . . . . . . . . . . . 15 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖 / 𝑘𝑘𝑚𝑗))
84 csbvarg 4457 . . . . . . . . . . . . . . . 16 (𝑖𝑁𝑖 / 𝑘𝑘 = 𝑖)
8584oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑖𝑁 → (𝑖 / 𝑘𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8683, 85eqtrd 2780 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8786oveq2d 7464 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8882, 87eqtrd 2780 . . . . . . . . . . . 12 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8988adantr 480 . . . . . . . . . . 11 ((𝑖𝑁𝑗𝑁) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9089adantl 481 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9126, 81, 903eqtrd 2784 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
92 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐𝐾)
9392anim1i 614 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐𝐾𝑚𝐵))
9493adantr 480 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐𝐾𝑚𝐵))
952, 3, 1, 5, 55matvscacell 22463 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑐𝐾𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9611, 94, 23, 95syl3anc 1371 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9791, 96eqtr4d 2783 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9897ralrimivva 3208 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9914ad3antrrr 729 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝐴 ∈ Ring)
10020adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 (1r𝐴)) ∈ 𝐵)
1013, 24ringcl 20277 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10299, 100, 52, 101syl3anc 1371 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10312ad2antrr 725 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1041, 2, 3, 5matvscl 22458 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾𝑚𝐵)) → (𝑐 𝑚) ∈ 𝐵)
105103, 93, 104syl2anc 583 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 𝑚) ∈ 𝐵)
1062, 3eqmat 22451 . . . . . . . 8 ((((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵 ∧ (𝑐 𝑚) ∈ 𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
107102, 105, 106syl2anc 583 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
10898, 107mpbird 257 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚))
1099, 108sylan9eqr 2802 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ 𝐶 = (𝑐 (1r𝐴))) → (𝐶 × 𝑚) = (𝑐 𝑚))
110109ex 412 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = (𝑐 𝑚)))
111110ralrimdva 3160 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝐶 = (𝑐 (1r𝐴)) → ∀𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
112111reximdva 3174 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
1138, 112mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  csb 3921  ifcif 4548  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  1rcur 20208  Ringcrg 20260   Mat cmat 22432   ScMat cscmat 22516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mamu 22416  df-mat 22433  df-scmat 22518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator