MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscm Structured version   Visualization version   GIF version

Theorem scmatscm 21122
Description: The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019.)
Hypotheses
Ref Expression
scmatscm.k 𝐾 = (Base‘𝑅)
scmatscm.a 𝐴 = (𝑁 Mat 𝑅)
scmatscm.b 𝐵 = (Base‘𝐴)
scmatscm.t = ( ·𝑠𝐴)
scmatscm.m × = (.r𝐴)
scmatscm.c 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscm (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Distinct variable groups:   𝐴,𝑚   𝐶,𝑐,𝑚   𝐾,𝑐,𝑚   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚   𝑆,𝑐,𝑚   ,𝑚
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑚,𝑐)   × (𝑚,𝑐)   (𝑐)

Proof of Theorem scmatscm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatscm.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatscm.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatscm.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2801 . . . 4 (1r𝐴) = (1r𝐴)
5 scmatscm.t . . . 4 = ( ·𝑠𝐴)
6 scmatscm.c . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 21115 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
873expa 1115 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
9 oveq1 7146 . . . . . 6 (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = ((𝑐 (1r𝐴)) × 𝑚))
10 simpr 488 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1110ad4antr 731 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
12 simpl 486 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1312adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
142matring 21052 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
153, 4ringidcl 19318 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
1716adantr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (1r𝐴) ∈ 𝐵)
1817anim1ci 618 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵))
191, 2, 3, 5matvscl 21040 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵)) → (𝑐 (1r𝐴)) ∈ 𝐵)
2013, 18, 19syl2anc 587 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) ∈ 𝐵)
2120anim1i 617 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
2221adantr 484 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
23 simpr 488 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
24 scmatscm.m . . . . . . . . . . . 12 × = (.r𝐴)
252, 3, 24matmulcell 21054 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2611, 22, 23, 25syl3anc 1368 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2712anim1i 617 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
28 df-3an 1086 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
2927, 28sylibr 237 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
3029ad3antrrr 729 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
31 eqid 2801 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
322, 1, 5, 31matsc 21059 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
3330, 32syl 17 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
34 eqeq12 2815 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑖𝑦 = 𝑘) → (𝑥 = 𝑦𝑖 = 𝑘))
3534ifbid 4450 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑖𝑦 = 𝑘) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
3635adantl 485 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑘)) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
37 simpl 486 . . . . . . . . . . . . . . . . 17 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3837adantl 485 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
3938adantr 484 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
40 simpr 488 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
41 vex 3447 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
42 fvex 6662 . . . . . . . . . . . . . . . . 17 (0g𝑅) ∈ V
4341, 42ifex 4476 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V)
4533, 36, 39, 40, 44ovmpod 7285 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖(𝑐 (1r𝐴))𝑘) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
4645oveq1d 7154 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)) = (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))
4746mpteq2dva 5128 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))))
4847oveq2d 7155 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))))
49 ovif 7234 . . . . . . . . . . . . . 14 (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)))
50 simp-6r 787 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
51 simplrr 777 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
52 simpr 488 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝑚𝐵)
5352ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑚𝐵)
542, 1, 3, 40, 51, 53matecld 21035 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ 𝐾)
55 eqid 2801 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
561, 55, 31ringlz 19337 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑘𝑚𝑗) ∈ 𝐾) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5750, 54, 56syl2anc 587 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5857ifeq2d 4447 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗))) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
5949, 58syl5eq 2848 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6059mpteq2dva 5128 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))))
6160oveq2d 7155 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))))
62 ringmnd 19304 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6362adantl 485 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Mnd)
6463ad4antr 731 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Mnd)
65 simpl 486 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
6665ad4antr 731 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
67 equcom 2025 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
68 ifbi 4449 . . . . . . . . . . . . . 14 ((𝑖 = 𝑘𝑘 = 𝑖) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6967, 68ax-mp 5 . . . . . . . . . . . . 13 if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))
7069mpteq2i 5125 . . . . . . . . . . . 12 (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))) = (𝑘𝑁 ↦ if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
711eleq2i 2884 . . . . . . . . . . . . . . . . 17 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7271biimpi 219 . . . . . . . . . . . . . . . 16 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7372adantl 485 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐 ∈ (Base‘𝑅))
7473ad3antrrr 729 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑐 ∈ (Base‘𝑅))
75 eqid 2801 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
762, 75, 3, 40, 51, 53matecld 21035 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ (Base‘𝑅))
7775, 55ringcl 19311 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ (𝑘𝑚𝑗) ∈ (Base‘𝑅)) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7850, 74, 76, 77syl3anc 1368 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7978ralrimiva 3152 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
8031, 64, 66, 38, 70, 79gsummpt1n0 19082 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
8148, 61, 803eqtrd 2840 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
82 csbov2g 7185 . . . . . . . . . . . . 13 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)))
83 csbov1g 7184 . . . . . . . . . . . . . . 15 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖 / 𝑘𝑘𝑚𝑗))
84 csbvarg 4342 . . . . . . . . . . . . . . . 16 (𝑖𝑁𝑖 / 𝑘𝑘 = 𝑖)
8584oveq1d 7154 . . . . . . . . . . . . . . 15 (𝑖𝑁 → (𝑖 / 𝑘𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8683, 85eqtrd 2836 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8786oveq2d 7155 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8882, 87eqtrd 2836 . . . . . . . . . . . 12 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8988adantr 484 . . . . . . . . . . 11 ((𝑖𝑁𝑗𝑁) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9089adantl 485 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9126, 81, 903eqtrd 2840 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
92 simpr 488 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐𝐾)
9392anim1i 617 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐𝐾𝑚𝐵))
9493adantr 484 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐𝐾𝑚𝐵))
952, 3, 1, 5, 55matvscacell 21045 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑐𝐾𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9611, 94, 23, 95syl3anc 1368 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9791, 96eqtr4d 2839 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9897ralrimivva 3159 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9914ad3antrrr 729 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝐴 ∈ Ring)
10020adantr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 (1r𝐴)) ∈ 𝐵)
1013, 24ringcl 19311 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10299, 100, 52, 101syl3anc 1368 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10312ad2antrr 725 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1041, 2, 3, 5matvscl 21040 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾𝑚𝐵)) → (𝑐 𝑚) ∈ 𝐵)
105103, 93, 104syl2anc 587 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 𝑚) ∈ 𝐵)
1062, 3eqmat 21033 . . . . . . . 8 ((((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵 ∧ (𝑐 𝑚) ∈ 𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
107102, 105, 106syl2anc 587 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
10898, 107mpbird 260 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚))
1099, 108sylan9eqr 2858 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ 𝐶 = (𝑐 (1r𝐴))) → (𝐶 × 𝑚) = (𝑐 𝑚))
110109ex 416 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = (𝑐 𝑚)))
111110ralrimdva 3157 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝐶 = (𝑐 (1r𝐴)) → ∀𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
112111reximdva 3236 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
1138, 112mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  csb 3831  ifcif 4428  cmpt 5113  cfv 6328  (class class class)co 7139  cmpo 7141  Fincfn 8496  Basecbs 16479  .rcmulr 16562   ·𝑠 cvsca 16565  0gc0g 16709   Σg cgsu 16710  Mndcmnd 17907  1rcur 19248  Ringcrg 19294   Mat cmat 21016   ScMat cscmat 21098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-subrg 19530  df-lmod 19633  df-lss 19701  df-sra 19941  df-rgmod 19942  df-dsmm 20425  df-frlm 20440  df-mamu 20995  df-mat 21017  df-scmat 21100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator