MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscm Structured version   Visualization version   GIF version

Theorem scmatscm 20534
Description: The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019.)
Hypotheses
Ref Expression
scmatscm.k 𝐾 = (Base‘𝑅)
scmatscm.a 𝐴 = (𝑁 Mat 𝑅)
scmatscm.b 𝐵 = (Base‘𝐴)
scmatscm.t = ( ·𝑠𝐴)
scmatscm.m × = (.r𝐴)
scmatscm.c 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatscm (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Distinct variable groups:   𝐴,𝑚   𝐶,𝑐,𝑚   𝐾,𝑐,𝑚   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚   𝑆,𝑐,𝑚   ,𝑚
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑚,𝑐)   × (𝑚,𝑐)   (𝑐)

Proof of Theorem scmatscm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatscm.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatscm.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatscm.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2813 . . . 4 (1r𝐴) = (1r𝐴)
5 scmatscm.t . . . 4 = ( ·𝑠𝐴)
6 scmatscm.c . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 20527 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
873expa 1140 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)))
9 oveq1 6884 . . . . . 6 (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = ((𝑐 (1r𝐴)) × 𝑚))
10 simpr 473 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1110ad4antr 715 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
12 simpl 470 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1312adantr 468 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
142matring 20463 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
153, 4ringidcl 18773 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
1716adantr 468 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (1r𝐴) ∈ 𝐵)
1817anim1i 604 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → ((1r𝐴) ∈ 𝐵𝑐𝐾))
1918ancomd 451 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵))
201, 2, 3, 5matvscl 20451 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾 ∧ (1r𝐴) ∈ 𝐵)) → (𝑐 (1r𝐴)) ∈ 𝐵)
2113, 19, 20syl2anc 575 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) ∈ 𝐵)
2221anim1i 604 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
2322adantr 468 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵))
24 simpr 473 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
25 scmatscm.m . . . . . . . . . . . 12 × = (.r𝐴)
262, 3, 25matmulcell 20465 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2711, 23, 24, 26syl3anc 1483 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))))
2812anim1i 604 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
29 df-3an 1102 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐𝐾))
3028, 29sylibr 225 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
3130ad3antrrr 712 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾))
32 eqid 2813 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
332, 1, 5, 32matsc 20471 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
3431, 33syl 17 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐 (1r𝐴)) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, 𝑐, (0g𝑅))))
35 eqeq12 2826 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑖𝑦 = 𝑘) → (𝑥 = 𝑦𝑖 = 𝑘))
3635ifbid 4308 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑖𝑦 = 𝑘) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
3736adantl 469 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑘)) → if(𝑥 = 𝑦, 𝑐, (0g𝑅)) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
38 simpl 470 . . . . . . . . . . . . . . . . 17 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3938adantl 469 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
4039adantr 468 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
41 simpr 473 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
42 vex 3401 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
43 fvex 6424 . . . . . . . . . . . . . . . . 17 (0g𝑅) ∈ V
4442, 43ifex 4334 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V
4544a1i 11 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, 𝑐, (0g𝑅)) ∈ V)
4634, 37, 40, 41, 45ovmpt2d 7021 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖(𝑐 (1r𝐴))𝑘) = if(𝑖 = 𝑘, 𝑐, (0g𝑅)))
4746oveq1d 6892 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)) = (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))
4847mpteq2dva 4945 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))))
4948oveq2d 6893 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))))
50 ovif 6970 . . . . . . . . . . . . . 14 (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)))
51 simp-6r 802 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
52 simplrr 787 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
53 simpr 473 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝑚𝐵)
5453ad2antrr 708 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑚𝐵)
552, 1, 3, 41, 52, 54matecld 20446 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ 𝐾)
56 eqid 2813 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
571, 56, 32ringlz 18792 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑘𝑚𝑗) ∈ 𝐾) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5851, 55, 57syl2anc 575 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗)) = (0g𝑅))
5958ifeq2d 4305 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), ((0g𝑅)(.r𝑅)(𝑘𝑚𝑗))) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6050, 59syl5eq 2859 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)) = if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
6160mpteq2dva 4945 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗))) = (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))))
6261oveq2d 6893 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ (if(𝑖 = 𝑘, 𝑐, (0g𝑅))(.r𝑅)(𝑘𝑚𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))))
63 ringmnd 18761 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6463adantl 469 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Mnd)
6564ad4antr 715 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Mnd)
66 simpl 470 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
6766ad4antr 715 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
68 equcom 2115 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
69 ifbi 4307 . . . . . . . . . . . . . 14 ((𝑖 = 𝑘𝑘 = 𝑖) → if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
7068, 69ax-mp 5 . . . . . . . . . . . . 13 if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)) = if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))
7170mpteq2i 4942 . . . . . . . . . . . 12 (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅))) = (𝑘𝑁 ↦ if(𝑘 = 𝑖, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))
721eleq2i 2884 . . . . . . . . . . . . . . . . 17 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7372biimpi 207 . . . . . . . . . . . . . . . 16 (𝑐𝐾𝑐 ∈ (Base‘𝑅))
7473adantl 469 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐 ∈ (Base‘𝑅))
7574ad3antrrr 712 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑐 ∈ (Base‘𝑅))
76 eqid 2813 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
772, 76, 3, 41, 52, 54matecld 20446 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑚𝑗) ∈ (Base‘𝑅))
7876, 56ringcl 18766 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ (𝑘𝑚𝑗) ∈ (Base‘𝑅)) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
7951, 75, 77, 78syl3anc 1483 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
8079ralrimiva 3161 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 (𝑐(.r𝑅)(𝑘𝑚𝑗)) ∈ (Base‘𝑅))
8132, 65, 67, 39, 71, 80gsummpt1n0 18568 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ if(𝑖 = 𝑘, (𝑐(.r𝑅)(𝑘𝑚𝑗)), (0g𝑅)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
8249, 62, 813eqtrd 2851 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑐 (1r𝐴))𝑘)(.r𝑅)(𝑘𝑚𝑗)))) = 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)))
83 csbov2g 6922 . . . . . . . . . . . . 13 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)))
84 csbov1g 6921 . . . . . . . . . . . . . . 15 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖 / 𝑘𝑘𝑚𝑗))
85 csbvarg 4207 . . . . . . . . . . . . . . . 16 (𝑖𝑁𝑖 / 𝑘𝑘 = 𝑖)
8685oveq1d 6892 . . . . . . . . . . . . . . 15 (𝑖𝑁 → (𝑖 / 𝑘𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8784, 86eqtrd 2847 . . . . . . . . . . . . . 14 (𝑖𝑁𝑖 / 𝑘(𝑘𝑚𝑗) = (𝑖𝑚𝑗))
8887oveq2d 6893 . . . . . . . . . . . . 13 (𝑖𝑁 → (𝑐(.r𝑅)𝑖 / 𝑘(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
8983, 88eqtrd 2847 . . . . . . . . . . . 12 (𝑖𝑁𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9089adantr 468 . . . . . . . . . . 11 ((𝑖𝑁𝑗𝑁) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9190adantl 469 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 / 𝑘(𝑐(.r𝑅)(𝑘𝑚𝑗)) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9227, 82, 913eqtrd 2851 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
93 simpr 473 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → 𝑐𝐾)
9493anim1i 604 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐𝐾𝑚𝐵))
9594adantr 468 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐𝐾𝑚𝐵))
962, 3, 1, 5, 56matvscacell 20456 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑐𝐾𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9711, 95, 24, 96syl3anc 1483 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑐 𝑚)𝑗) = (𝑐(.r𝑅)(𝑖𝑚𝑗)))
9892, 97eqtr4d 2850 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
9998ralrimivva 3166 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗))
10014ad3antrrr 712 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → 𝐴 ∈ Ring)
10121adantr 468 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 (1r𝐴)) ∈ 𝐵)
1023, 25ringcl 18766 . . . . . . . . 9 ((𝐴 ∈ Ring ∧ (𝑐 (1r𝐴)) ∈ 𝐵𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
103100, 101, 53, 102syl3anc 1483 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵)
10412ad2antrr 708 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1051, 2, 3, 5matvscl 20451 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐾𝑚𝐵)) → (𝑐 𝑚) ∈ 𝐵)
106104, 94, 105syl2anc 575 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝑐 𝑚) ∈ 𝐵)
1072, 3eqmat 20444 . . . . . . . 8 ((((𝑐 (1r𝐴)) × 𝑚) ∈ 𝐵 ∧ (𝑐 𝑚) ∈ 𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
108103, 106, 107syl2anc 575 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑐 (1r𝐴)) × 𝑚)𝑗) = (𝑖(𝑐 𝑚)𝑗)))
10999, 108mpbird 248 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → ((𝑐 (1r𝐴)) × 𝑚) = (𝑐 𝑚))
1109, 109sylan9eqr 2869 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) ∧ 𝐶 = (𝑐 (1r𝐴))) → (𝐶 × 𝑚) = (𝑐 𝑚))
111110ex 399 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) ∧ 𝑚𝐵) → (𝐶 = (𝑐 (1r𝐴)) → (𝐶 × 𝑚) = (𝑐 𝑚)))
112111ralrimdva 3164 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) ∧ 𝑐𝐾) → (𝐶 = (𝑐 (1r𝐴)) → ∀𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
113112reximdva 3211 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → (∃𝑐𝐾 𝐶 = (𝑐 (1r𝐴)) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚)))
1148, 113mpd 15 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝑆) → ∃𝑐𝐾𝑚𝐵 (𝐶 × 𝑚) = (𝑐 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wral 3103  wrex 3104  Vcvv 3398  csb 3735  ifcif 4286  cmpt 4930  cfv 6104  (class class class)co 6877  cmpt2 6879  Fincfn 8195  Basecbs 16071  .rcmulr 16157   ·𝑠 cvsca 16160  0gc0g 16308   Σg cgsu 16309  Mndcmnd 17502  1rcur 18706  Ringcrg 18752   Mat cmat 20427   ScMat cscmat 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-ot 4386  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-om 7299  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-z 11647  df-dec 11763  df-uz 11908  df-fz 12553  df-fzo 12693  df-seq 13028  df-hash 13341  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-mulr 16170  df-sca 16172  df-vsca 16173  df-ip 16174  df-tset 16175  df-ple 16176  df-ds 16178  df-hom 16180  df-cco 16181  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17796  df-ghm 17863  df-cntz 17954  df-cmn 18399  df-abl 18400  df-mgp 18695  df-ur 18707  df-ring 18754  df-subrg 18985  df-lmod 19072  df-lss 19140  df-sra 19384  df-rgmod 19385  df-dsmm 20290  df-frlm 20305  df-mamu 20404  df-mat 20428  df-scmat 20512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator