| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4496 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | ifeq2d 4497 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| 5 | 2, 4 | eqtrd 2768 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-un 3903 df-if 4477 |
| This theorem is referenced by: ifbieq12d 4505 csbif 4534 oev 8437 dfac12r 10047 xaddpnf1 13129 swrdccat3blem 14650 relexpsucnnr 14936 ruclem1 16144 eucalgval 16497 gsumpropd 18590 gsumpropd2lem 18591 gsumress 18594 mulgfval 18986 mulgfvalALT 18987 mulgpropd 19033 frgpup3lem 19693 isobs 21661 uvcfval 21725 psrascl 21919 subrgmvr 21971 psdmvr 22087 rhmmpl 22301 rhmply1vr1 22305 matsc 22368 scmatscmide 22425 marrepval0 22479 marepvval0 22484 mulmarep1el 22490 madufval 22555 madugsum 22561 minmar1fval 22564 pmat1opsc 22617 pmat1ovscd 22618 mat2pmat1 22650 decpmatid 22688 idpm2idmp 22719 pcoval 24941 pcorevlem 24956 itg2const 25671 ditgeq3 25781 efrlim 26909 efrlimOLD 26910 lgsval 27242 rpvmasum2 27453 expsval 28351 fzto1st 33081 psgnfzto1st 33083 extvval 33584 xrhval 34054 cbvditgdavw 36349 itg2addnclem 37734 ftc1anclem5 37760 hdmap1fval 41918 sticksstones12a 42273 sticksstones12 42274 rhmpsr 42673 selvvvval 42706 fsuppind 42711 dgrsub2 43255 reabssgn 43756 dirkerval 46216 fourierdlem111 46342 fourierdlem112 46343 fourierdlem113 46344 hsphoif 46701 hsphoival 46704 hoidmvlelem5 46724 hoidifhspval2 46740 hspmbllem2 46752 itcoval 48789 |
| Copyright terms: Public domain | W3C validator |