Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4478 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | ifeq2d 4479 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-if 4460 |
This theorem is referenced by: ifbieq12d 4487 csbif 4516 oev 8344 dfac12r 9902 xaddpnf1 12960 swrdccat3blem 14452 relexpsucnnr 14736 ruclem1 15940 eucalgval 16287 gsumpropd 18362 gsumpropd2lem 18363 gsumress 18366 mulgfval 18702 mulgfvalALT 18703 mulgpropd 18745 frgpup3lem 19383 isobs 20927 uvcfval 20991 subrgmvr 21234 matsc 21599 scmatscmide 21656 marrepval0 21710 marepvval0 21715 mulmarep1el 21721 madufval 21786 madugsum 21792 minmar1fval 21795 pmat1opsc 21848 pmat1ovscd 21849 mat2pmat1 21881 decpmatid 21919 idpm2idmp 21950 pcoval 24174 pcorevlem 24189 itg2const 24905 ditgeq3 25014 efrlim 26119 lgsval 26449 rpvmasum2 26660 fzto1st 31370 psgnfzto1st 31372 xrhval 31968 itg2addnclem 35828 ftc1anclem5 35854 hdmap1fval 39810 sticksstones12a 40113 sticksstones12 40114 fsuppind 40279 mhphf 40285 dgrsub2 40960 reabssgn 41244 dirkerval 43632 fourierdlem111 43758 fourierdlem112 43759 fourierdlem113 43760 hsphoif 44114 hsphoival 44117 hoidmvlelem5 44137 hoidifhspval2 44153 hspmbllem2 44165 itcoval 46007 |
Copyright terms: Public domain | W3C validator |