![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4550 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | ifeq2d 4551 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
5 | 2, 4 | eqtrd 2775 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 df-if 4532 |
This theorem is referenced by: ifbieq12d 4559 csbif 4588 oev 8551 dfac12r 10185 xaddpnf1 13265 swrdccat3blem 14774 relexpsucnnr 15061 ruclem1 16264 eucalgval 16616 gsumpropd 18704 gsumpropd2lem 18705 gsumress 18708 mulgfval 19100 mulgfvalALT 19101 mulgpropd 19147 frgpup3lem 19810 isobs 21758 uvcfval 21822 psrascl 22017 subrgmvr 22069 rhmmpl 22403 rhmply1vr1 22407 matsc 22472 scmatscmide 22529 marrepval0 22583 marepvval0 22588 mulmarep1el 22594 madufval 22659 madugsum 22665 minmar1fval 22668 pmat1opsc 22721 pmat1ovscd 22722 mat2pmat1 22754 decpmatid 22792 idpm2idmp 22823 pcoval 25058 pcorevlem 25073 itg2const 25790 ditgeq3 25900 efrlim 27027 efrlimOLD 27028 lgsval 27360 rpvmasum2 27571 expsval 28423 fzto1st 33106 psgnfzto1st 33108 xrhval 33981 cbvditgdavw 36265 itg2addnclem 37658 ftc1anclem5 37684 hdmap1fval 41779 sticksstones12a 42139 sticksstones12 42140 rhmpsr 42539 selvvvval 42572 fsuppind 42577 dgrsub2 43124 reabssgn 43626 dirkerval 46047 fourierdlem111 46173 fourierdlem112 46174 fourierdlem113 46175 hsphoif 46532 hsphoival 46535 hoidmvlelem5 46555 hoidifhspval2 46571 hspmbllem2 46583 itcoval 48511 |
Copyright terms: Public domain | W3C validator |