Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4475 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | ifeq2d 4476 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-if 4457 |
This theorem is referenced by: ifbieq12d 4484 csbif 4513 oev 8306 dfac12r 9833 xaddpnf1 12889 swrdccat3blem 14380 relexpsucnnr 14664 ruclem1 15868 eucalgval 16215 gsumpropd 18277 gsumpropd2lem 18278 gsumress 18281 mulgfval 18617 mulgfvalALT 18618 mulgpropd 18660 frgpup3lem 19298 isobs 20837 uvcfval 20901 subrgmvr 21144 matsc 21507 scmatscmide 21564 marrepval0 21618 marepvval0 21623 mulmarep1el 21629 madufval 21694 madugsum 21700 minmar1fval 21703 pmat1opsc 21756 pmat1ovscd 21757 mat2pmat1 21789 decpmatid 21827 idpm2idmp 21858 pcoval 24080 pcorevlem 24095 itg2const 24810 ditgeq3 24919 efrlim 26024 lgsval 26354 rpvmasum2 26565 fzto1st 31272 psgnfzto1st 31274 xrhval 31868 itg2addnclem 35755 ftc1anclem5 35781 hdmap1fval 39737 sticksstones12a 40041 sticksstones12 40042 fsuppind 40202 mhphf 40208 dgrsub2 40876 reabssgn 41133 dirkerval 43522 fourierdlem111 43648 fourierdlem112 43649 fourierdlem113 43650 hsphoif 44004 hsphoival 44007 hoidmvlelem5 44027 hoidifhspval2 44043 hspmbllem2 44055 itcoval 45895 |
Copyright terms: Public domain | W3C validator |