![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4567 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | ifeq2d 4568 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
5 | 2, 4 | eqtrd 2780 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-if 4549 |
This theorem is referenced by: ifbieq12d 4576 csbif 4605 oev 8570 dfac12r 10216 xaddpnf1 13288 swrdccat3blem 14787 relexpsucnnr 15074 ruclem1 16279 eucalgval 16629 gsumpropd 18716 gsumpropd2lem 18717 gsumress 18720 mulgfval 19109 mulgfvalALT 19110 mulgpropd 19156 frgpup3lem 19819 isobs 21763 uvcfval 21827 psrascl 22022 subrgmvr 22074 rhmmpl 22408 rhmply1vr1 22412 matsc 22477 scmatscmide 22534 marrepval0 22588 marepvval0 22593 mulmarep1el 22599 madufval 22664 madugsum 22670 minmar1fval 22673 pmat1opsc 22726 pmat1ovscd 22727 mat2pmat1 22759 decpmatid 22797 idpm2idmp 22828 pcoval 25063 pcorevlem 25078 itg2const 25795 ditgeq3 25905 efrlim 27030 efrlimOLD 27031 lgsval 27363 rpvmasum2 27574 expsval 28426 fzto1st 33096 psgnfzto1st 33098 xrhval 33964 cbvditgdavw 36248 itg2addnclem 37631 ftc1anclem5 37657 hdmap1fval 41753 sticksstones12a 42114 sticksstones12 42115 rhmpsr 42507 selvvvval 42540 fsuppind 42545 dgrsub2 43092 reabssgn 43598 dirkerval 46012 fourierdlem111 46138 fourierdlem112 46139 fourierdlem113 46140 hsphoif 46497 hsphoival 46500 hoidmvlelem5 46520 hoidifhspval2 46536 hspmbllem2 46548 itcoval 48395 |
Copyright terms: Public domain | W3C validator |