| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4508 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | ifeq2d 4509 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-if 4489 |
| This theorem is referenced by: ifbieq12d 4517 csbif 4546 oev 8478 dfac12r 10100 xaddpnf1 13186 swrdccat3blem 14704 relexpsucnnr 14991 ruclem1 16199 eucalgval 16552 gsumpropd 18605 gsumpropd2lem 18606 gsumress 18609 mulgfval 19001 mulgfvalALT 19002 mulgpropd 19048 frgpup3lem 19707 isobs 21629 uvcfval 21693 psrascl 21888 subrgmvr 21940 psdmvr 22056 rhmmpl 22270 rhmply1vr1 22274 matsc 22337 scmatscmide 22394 marrepval0 22448 marepvval0 22453 mulmarep1el 22459 madufval 22524 madugsum 22530 minmar1fval 22533 pmat1opsc 22586 pmat1ovscd 22587 mat2pmat1 22619 decpmatid 22657 idpm2idmp 22688 pcoval 24911 pcorevlem 24926 itg2const 25641 ditgeq3 25751 efrlim 26879 efrlimOLD 26880 lgsval 27212 rpvmasum2 27423 expsval 28311 fzto1st 33060 psgnfzto1st 33062 xrhval 34008 cbvditgdavw 36270 itg2addnclem 37665 ftc1anclem5 37691 hdmap1fval 41790 sticksstones12a 42145 sticksstones12 42146 rhmpsr 42540 selvvvval 42573 fsuppind 42578 dgrsub2 43124 reabssgn 43625 dirkerval 46089 fourierdlem111 46215 fourierdlem112 46216 fourierdlem113 46217 hsphoif 46574 hsphoival 46577 hoidmvlelem5 46597 hoidifhspval2 46613 hspmbllem2 46625 itcoval 48650 |
| Copyright terms: Public domain | W3C validator |