| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4525 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | ifeq2d 4526 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| 5 | 2, 4 | eqtrd 2771 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-un 3936 df-if 4506 |
| This theorem is referenced by: ifbieq12d 4534 csbif 4563 oev 8531 dfac12r 10166 xaddpnf1 13247 swrdccat3blem 14762 relexpsucnnr 15049 ruclem1 16254 eucalgval 16606 gsumpropd 18661 gsumpropd2lem 18662 gsumress 18665 mulgfval 19057 mulgfvalALT 19058 mulgpropd 19104 frgpup3lem 19763 isobs 21685 uvcfval 21749 psrascl 21944 subrgmvr 21996 psdmvr 22112 rhmmpl 22326 rhmply1vr1 22330 matsc 22393 scmatscmide 22450 marrepval0 22504 marepvval0 22509 mulmarep1el 22515 madufval 22580 madugsum 22586 minmar1fval 22589 pmat1opsc 22642 pmat1ovscd 22643 mat2pmat1 22675 decpmatid 22713 idpm2idmp 22744 pcoval 24967 pcorevlem 24982 itg2const 25698 ditgeq3 25808 efrlim 26936 efrlimOLD 26937 lgsval 27269 rpvmasum2 27480 expsval 28368 fzto1st 33119 psgnfzto1st 33121 xrhval 34054 cbvditgdavw 36305 itg2addnclem 37700 ftc1anclem5 37726 hdmap1fval 41820 sticksstones12a 42175 sticksstones12 42176 rhmpsr 42550 selvvvval 42583 fsuppind 42588 dgrsub2 43134 reabssgn 43635 dirkerval 46100 fourierdlem111 46226 fourierdlem112 46227 fourierdlem113 46228 hsphoif 46585 hsphoival 46588 hoidmvlelem5 46608 hoidifhspval2 46624 hspmbllem2 46636 itcoval 48621 |
| Copyright terms: Public domain | W3C validator |