| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4498 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | ifeq2d 4499 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-un 3910 df-if 4479 |
| This theorem is referenced by: ifbieq12d 4507 csbif 4536 oev 8439 dfac12r 10060 xaddpnf1 13146 swrdccat3blem 14663 relexpsucnnr 14950 ruclem1 16158 eucalgval 16511 gsumpropd 18570 gsumpropd2lem 18571 gsumress 18574 mulgfval 18966 mulgfvalALT 18967 mulgpropd 19013 frgpup3lem 19674 isobs 21645 uvcfval 21709 psrascl 21904 subrgmvr 21956 psdmvr 22072 rhmmpl 22286 rhmply1vr1 22290 matsc 22353 scmatscmide 22410 marrepval0 22464 marepvval0 22469 mulmarep1el 22475 madufval 22540 madugsum 22546 minmar1fval 22549 pmat1opsc 22602 pmat1ovscd 22603 mat2pmat1 22635 decpmatid 22673 idpm2idmp 22704 pcoval 24927 pcorevlem 24942 itg2const 25657 ditgeq3 25767 efrlim 26895 efrlimOLD 26896 lgsval 27228 rpvmasum2 27439 expsval 28335 fzto1st 33058 psgnfzto1st 33060 xrhval 33987 cbvditgdavw 36258 itg2addnclem 37653 ftc1anclem5 37679 hdmap1fval 41778 sticksstones12a 42133 sticksstones12 42134 rhmpsr 42528 selvvvval 42561 fsuppind 42566 dgrsub2 43111 reabssgn 43612 dirkerval 46076 fourierdlem111 46202 fourierdlem112 46203 fourierdlem113 46204 hsphoif 46561 hsphoival 46564 hoidmvlelem5 46584 hoidifhspval2 46600 hspmbllem2 46612 itcoval 48650 |
| Copyright terms: Public domain | W3C validator |