| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4544 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | ifeq2d 4545 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| 5 | 2, 4 | eqtrd 2776 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ifcif 4524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-un 3955 df-if 4525 |
| This theorem is referenced by: ifbieq12d 4553 csbif 4582 oev 8553 dfac12r 10188 xaddpnf1 13269 swrdccat3blem 14778 relexpsucnnr 15065 ruclem1 16268 eucalgval 16620 gsumpropd 18692 gsumpropd2lem 18693 gsumress 18696 mulgfval 19088 mulgfvalALT 19089 mulgpropd 19135 frgpup3lem 19796 isobs 21741 uvcfval 21805 psrascl 22000 subrgmvr 22052 psdmvr 22174 rhmmpl 22388 rhmply1vr1 22392 matsc 22457 scmatscmide 22514 marrepval0 22568 marepvval0 22573 mulmarep1el 22579 madufval 22644 madugsum 22650 minmar1fval 22653 pmat1opsc 22706 pmat1ovscd 22707 mat2pmat1 22739 decpmatid 22777 idpm2idmp 22808 pcoval 25045 pcorevlem 25060 itg2const 25776 ditgeq3 25886 efrlim 27013 efrlimOLD 27014 lgsval 27346 rpvmasum2 27557 expsval 28409 fzto1st 33124 psgnfzto1st 33126 xrhval 34020 cbvditgdavw 36284 itg2addnclem 37679 ftc1anclem5 37705 hdmap1fval 41799 sticksstones12a 42159 sticksstones12 42160 rhmpsr 42567 selvvvval 42600 fsuppind 42605 dgrsub2 43152 reabssgn 43654 dirkerval 46111 fourierdlem111 46237 fourierdlem112 46238 fourierdlem113 46239 hsphoif 46596 hsphoival 46599 hoidmvlelem5 46619 hoidifhspval2 46635 hspmbllem2 46647 itcoval 48587 |
| Copyright terms: Public domain | W3C validator |