| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4525 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | ifeq2d 4526 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| 5 | 2, 4 | eqtrd 2769 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-un 3936 df-if 4506 |
| This theorem is referenced by: ifbieq12d 4534 csbif 4563 oev 8534 dfac12r 10169 xaddpnf1 13250 swrdccat3blem 14759 relexpsucnnr 15046 ruclem1 16249 eucalgval 16601 gsumpropd 18660 gsumpropd2lem 18661 gsumress 18664 mulgfval 19056 mulgfvalALT 19057 mulgpropd 19103 frgpup3lem 19763 isobs 21694 uvcfval 21758 psrascl 21953 subrgmvr 22005 psdmvr 22121 rhmmpl 22335 rhmply1vr1 22339 matsc 22404 scmatscmide 22461 marrepval0 22515 marepvval0 22520 mulmarep1el 22526 madufval 22591 madugsum 22597 minmar1fval 22600 pmat1opsc 22653 pmat1ovscd 22654 mat2pmat1 22686 decpmatid 22724 idpm2idmp 22755 pcoval 24980 pcorevlem 24995 itg2const 25711 ditgeq3 25821 efrlim 26948 efrlimOLD 26949 lgsval 27281 rpvmasum2 27492 expsval 28344 fzto1st 33062 psgnfzto1st 33064 xrhval 33978 cbvditgdavw 36242 itg2addnclem 37637 ftc1anclem5 37663 hdmap1fval 41757 sticksstones12a 42117 sticksstones12 42118 rhmpsr 42525 selvvvval 42558 fsuppind 42563 dgrsub2 43110 reabssgn 43611 dirkerval 46063 fourierdlem111 46189 fourierdlem112 46190 fourierdlem113 46191 hsphoif 46548 hsphoival 46551 hoidmvlelem5 46571 hoidifhspval2 46587 hspmbllem2 46599 itcoval 48540 |
| Copyright terms: Public domain | W3C validator |