![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4546 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | ifeq2d 4547 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
5 | 2, 4 | eqtrd 2770 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-un 3952 df-if 4528 |
This theorem is referenced by: ifbieq12d 4555 csbif 4584 oev 8516 dfac12r 10143 xaddpnf1 13209 swrdccat3blem 14693 relexpsucnnr 14976 ruclem1 16178 eucalgval 16523 gsumpropd 18603 gsumpropd2lem 18604 gsumress 18607 mulgfval 18988 mulgfvalALT 18989 mulgpropd 19032 frgpup3lem 19686 isobs 21494 uvcfval 21558 subrgmvr 21807 matsc 22172 scmatscmide 22229 marrepval0 22283 marepvval0 22288 mulmarep1el 22294 madufval 22359 madugsum 22365 minmar1fval 22368 pmat1opsc 22421 pmat1ovscd 22422 mat2pmat1 22454 decpmatid 22492 idpm2idmp 22523 pcoval 24758 pcorevlem 24773 itg2const 25490 ditgeq3 25599 efrlim 26710 lgsval 27040 rpvmasum2 27251 fzto1st 32532 psgnfzto1st 32534 xrhval 33296 itg2addnclem 36842 ftc1anclem5 36868 hdmap1fval 40970 sticksstones12a 41279 sticksstones12 41280 rhmmpl 41427 selvvvval 41459 fsuppind 41464 dgrsub2 42179 reabssgn 42689 dirkerval 45105 fourierdlem111 45231 fourierdlem112 45232 fourierdlem113 45233 hsphoif 45590 hsphoival 45593 hoidmvlelem5 45613 hoidifhspval2 45629 hspmbllem2 45641 itcoval 47434 |
Copyright terms: Public domain | W3C validator |