![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4546 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | ifeq2d 4547 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
5 | 2, 4 | eqtrd 2772 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ifcif 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-un 3952 df-if 4528 |
This theorem is referenced by: ifbieq12d 4555 csbif 4584 oev 8510 dfac12r 10137 xaddpnf1 13201 swrdccat3blem 14685 relexpsucnnr 14968 ruclem1 16170 eucalgval 16515 gsumpropd 18593 gsumpropd2lem 18594 gsumress 18597 mulgfval 18946 mulgfvalALT 18947 mulgpropd 18990 frgpup3lem 19639 isobs 21266 uvcfval 21330 subrgmvr 21579 matsc 21943 scmatscmide 22000 marrepval0 22054 marepvval0 22059 mulmarep1el 22065 madufval 22130 madugsum 22136 minmar1fval 22139 pmat1opsc 22192 pmat1ovscd 22193 mat2pmat1 22225 decpmatid 22263 idpm2idmp 22294 pcoval 24518 pcorevlem 24533 itg2const 25249 ditgeq3 25358 efrlim 26463 lgsval 26793 rpvmasum2 27004 fzto1st 32249 psgnfzto1st 32251 xrhval 32986 itg2addnclem 36527 ftc1anclem5 36553 hdmap1fval 40655 sticksstones12a 40961 sticksstones12 40962 rhmmpl 41122 selvvvval 41154 fsuppind 41159 dgrsub2 41862 reabssgn 42372 dirkerval 44793 fourierdlem111 44919 fourierdlem112 44920 fourierdlem113 44921 hsphoif 45278 hsphoival 45281 hoidmvlelem5 45301 hoidifhspval2 45317 hspmbllem2 45329 itcoval 47300 |
Copyright terms: Public domain | W3C validator |