| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ifeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4495 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | ifeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | ifeq2d 4496 | . 2 ⊢ (𝜑 → if(𝜓, 𝐵, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| 5 | 2, 4 | eqtrd 2766 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3907 df-if 4476 |
| This theorem is referenced by: ifbieq12d 4504 csbif 4533 oev 8429 dfac12r 10038 xaddpnf1 13125 swrdccat3blem 14646 relexpsucnnr 14932 ruclem1 16140 eucalgval 16493 gsumpropd 18586 gsumpropd2lem 18587 gsumress 18590 mulgfval 18982 mulgfvalALT 18983 mulgpropd 19029 frgpup3lem 19690 isobs 21658 uvcfval 21722 psrascl 21917 subrgmvr 21969 psdmvr 22085 rhmmpl 22299 rhmply1vr1 22303 matsc 22366 scmatscmide 22423 marrepval0 22477 marepvval0 22482 mulmarep1el 22488 madufval 22553 madugsum 22559 minmar1fval 22562 pmat1opsc 22615 pmat1ovscd 22616 mat2pmat1 22648 decpmatid 22686 idpm2idmp 22717 pcoval 24939 pcorevlem 24954 itg2const 25669 ditgeq3 25779 efrlim 26907 efrlimOLD 26908 lgsval 27240 rpvmasum2 27451 expsval 28349 fzto1st 33070 psgnfzto1st 33072 xrhval 34029 cbvditgdavw 36322 itg2addnclem 37717 ftc1anclem5 37743 hdmap1fval 41841 sticksstones12a 42196 sticksstones12 42197 rhmpsr 42591 selvvvval 42624 fsuppind 42629 dgrsub2 43174 reabssgn 43675 dirkerval 46135 fourierdlem111 46261 fourierdlem112 46262 fourierdlem113 46263 hsphoif 46620 hsphoival 46623 hoidmvlelem5 46643 hoidifhspval2 46659 hspmbllem2 46671 itcoval 48699 |
| Copyright terms: Public domain | W3C validator |