| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 3437 |
. . . . . 6
⊢ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)} |
| 2 | | clscld.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = ∪
𝐽 |
| 3 | 2 | cldopn 23039 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑧) ∈ 𝐽) |
| 4 | 3 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ∈ 𝐽) |
| 5 | | sscon 4143 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ 𝑧 → (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
| 6 | 5 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
| 7 | 2 | topopn 22912 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 8 | | difexg 5329 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝐽 → (𝑋 ∖ 𝑧) ∈ V) |
| 9 | | elpwg 4603 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∖ 𝑧) ∈ V → ((𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆) ↔ (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 10 | 7, 8, 9 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆) ↔ (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 11 | 10 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → ((𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆) ↔ (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 12 | 6, 11 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆)) |
| 13 | 4, 12 | elind 4200 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
| 14 | 2 | cldss 23037 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (Clsd‘𝐽) → 𝑧 ⊆ 𝑋) |
| 15 | 14 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → 𝑧 ⊆ 𝑋) |
| 16 | | dfss4 4269 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑧)) = 𝑧) |
| 17 | 15, 16 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ (𝑋 ∖ 𝑧)) = 𝑧) |
| 18 | 17 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → 𝑧 = (𝑋 ∖ (𝑋 ∖ 𝑧))) |
| 19 | | difeq2 4120 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑋 ∖ 𝑧) → (𝑋 ∖ 𝑥) = (𝑋 ∖ (𝑋 ∖ 𝑧))) |
| 20 | 19 | rspceeqv 3645 |
. . . . . . . . . 10
⊢ (((𝑋 ∖ 𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) ∧ 𝑧 = (𝑋 ∖ (𝑋 ∖ 𝑧))) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)) |
| 21 | 13, 18, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)) |
| 22 | 21 | ex 412 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥))) |
| 23 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) |
| 24 | | elinel1 4201 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) → 𝑥 ∈ 𝐽) |
| 25 | 2 | opncld 23041 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
| 26 | 23, 24, 25 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
| 27 | | elinel2 4202 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) → 𝑥 ∈ 𝒫 (𝑋 ∖ 𝑆)) |
| 28 | 27 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑥 ∈ 𝒫 (𝑋 ∖ 𝑆)) |
| 29 | 28 | elpwid 4609 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑥 ⊆ (𝑋 ∖ 𝑆)) |
| 30 | 29 | difss2d 4139 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑥 ⊆ 𝑋) |
| 31 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑆 ⊆ 𝑋) |
| 32 | | ssconb 4142 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑋) → (𝑥 ⊆ (𝑋 ∖ 𝑆) ↔ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
| 33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → (𝑥 ⊆ (𝑋 ∖ 𝑆) ↔ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
| 34 | 29, 33 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑆 ⊆ (𝑋 ∖ 𝑥)) |
| 35 | 26, 34 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → ((𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
| 36 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑋 ∖ 𝑥) → (𝑧 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽))) |
| 37 | | sseq2 4010 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑋 ∖ 𝑥) → (𝑆 ⊆ 𝑧 ↔ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
| 38 | 36, 37 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑋 ∖ 𝑥) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧) ↔ ((𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋 ∖ 𝑥)))) |
| 39 | 35, 38 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → (𝑧 = (𝑋 ∖ 𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧))) |
| 40 | 39 | rexlimdva 3155 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧))) |
| 41 | 22, 40 | impbid 212 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧) ↔ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥))) |
| 42 | 41 | abbidv 2808 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
| 43 | 1, 42 | eqtrid 2789 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
| 44 | 43 | inteqd 4951 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
| 45 | | difexg 5329 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐽 → (𝑋 ∖ 𝑥) ∈ V) |
| 46 | 45 | ralrimivw 3150 |
. . . . . 6
⊢ (𝑋 ∈ 𝐽 → ∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) ∈ V) |
| 47 | | dfiin2g 5032 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) ∈ V → ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
| 48 | 7, 46, 47 | 3syl 18 |
. . . . 5
⊢ (𝐽 ∈ Top → ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
| 49 | 48 | adantr 480 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
| 50 | 44, 49 | eqtr4d 2780 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥)) |
| 51 | 2 | clsval 23045 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧}) |
| 52 | | uniiun 5058 |
. . . . . 6
⊢ ∪ (𝐽
∩ 𝒫 (𝑋 ∖
𝑆)) = ∪ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥 |
| 53 | 52 | difeq2i 4123 |
. . . . 5
⊢ (𝑋 ∖ ∪ (𝐽
∩ 𝒫 (𝑋 ∖
𝑆))) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥) |
| 54 | 53 | a1i 11 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥)) |
| 55 | | 0opn 22910 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ∅
∈ 𝐽) |
| 56 | 55 | adantr 480 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∅ ∈ 𝐽) |
| 57 | | 0elpw 5356 |
. . . . . . 7
⊢ ∅
∈ 𝒫 (𝑋 ∖
𝑆) |
| 58 | 57 | a1i 11 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∅ ∈ 𝒫 (𝑋 ∖ 𝑆)) |
| 59 | 56, 58 | elind 4200 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∅ ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
| 60 | | ne0i 4341 |
. . . . 5
⊢ (∅
∈ (𝐽 ∩ 𝒫
(𝑋 ∖ 𝑆)) → (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) ≠ ∅) |
| 61 | | iindif2 5077 |
. . . . 5
⊢ ((𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) ≠ ∅ → ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥)) |
| 62 | 59, 60, 61 | 3syl 18 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥)) |
| 63 | 54, 62 | eqtr4d 2780 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) = ∩
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥)) |
| 64 | 50, 51, 63 | 3eqtr4d 2787 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)))) |
| 65 | | difssd 4137 |
. . . 4
⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ 𝑆) ⊆ 𝑋) |
| 66 | 2 | ntrval 23044 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) = ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
| 67 | 65, 66 | sylan2 593 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) = ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
| 68 | 67 | difeq2d 4126 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆))) = (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)))) |
| 69 | 64, 68 | eqtr4d 2780 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) |