MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval2 Structured version   Visualization version   GIF version

Theorem clsval2 21660
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))

Proof of Theorem clsval2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3149 . . . . . 6 {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)}
2 clscld.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
32cldopn 21641 . . . . . . . . . . . 12 (𝑧 ∈ (Clsd‘𝐽) → (𝑋𝑧) ∈ 𝐽)
43ad2antrl 726 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝐽)
5 sscon 4117 . . . . . . . . . . . . 13 (𝑆𝑧 → (𝑋𝑧) ⊆ (𝑋𝑆))
65ad2antll 727 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ⊆ (𝑋𝑆))
72topopn 21516 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → 𝑋𝐽)
8 difexg 5233 . . . . . . . . . . . . . 14 (𝑋𝐽 → (𝑋𝑧) ∈ V)
9 elpwg 4544 . . . . . . . . . . . . . 14 ((𝑋𝑧) ∈ V → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
107, 8, 93syl 18 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
1110ad2antrr 724 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
126, 11mpbird 259 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝒫 (𝑋𝑆))
134, 12elind 4173 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
142cldss 21639 . . . . . . . . . . . . 13 (𝑧 ∈ (Clsd‘𝐽) → 𝑧𝑋)
1514ad2antrl 726 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧𝑋)
16 dfss4 4237 . . . . . . . . . . . 12 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1715, 16sylib 220 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1817eqcomd 2829 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧 = (𝑋 ∖ (𝑋𝑧)))
19 difeq2 4095 . . . . . . . . . . 11 (𝑥 = (𝑋𝑧) → (𝑋𝑥) = (𝑋 ∖ (𝑋𝑧)))
2019rspceeqv 3640 . . . . . . . . . 10 (((𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) ∧ 𝑧 = (𝑋 ∖ (𝑋𝑧))) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2113, 18, 20syl2anc 586 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2221ex 415 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
23 simpl 485 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝐽 ∈ Top)
24 elinel1 4174 . . . . . . . . . . . 12 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥𝐽)
252opncld 21643 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
2623, 24, 25syl2an 597 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑋𝑥) ∈ (Clsd‘𝐽))
27 elinel2 4175 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥 ∈ 𝒫 (𝑋𝑆))
2827adantl 484 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ∈ 𝒫 (𝑋𝑆))
2928elpwid 4552 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ⊆ (𝑋𝑆))
3029difss2d 4113 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥𝑋)
31 simplr 767 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆𝑋)
32 ssconb 4116 . . . . . . . . . . . . 13 ((𝑥𝑋𝑆𝑋) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3330, 31, 32syl2anc 586 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3429, 33mpbid 234 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆 ⊆ (𝑋𝑥))
3526, 34jca 514 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)))
36 eleq1 2902 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ (Clsd‘𝐽)))
37 sseq2 3995 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑆𝑧𝑆 ⊆ (𝑋𝑥)))
3836, 37anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑋𝑥) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥))))
3935, 38syl5ibrcom 249 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4039rexlimdva 3286 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4122, 40impbid 214 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
4241abbidv 2887 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
431, 42syl5eq 2870 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
4443inteqd 4883 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
45 difexg 5233 . . . . . . 7 (𝑋𝐽 → (𝑋𝑥) ∈ V)
4645ralrimivw 3185 . . . . . 6 (𝑋𝐽 → ∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V)
47 dfiin2g 4959 . . . . . 6 (∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
487, 46, 473syl 18 . . . . 5 (𝐽 ∈ Top → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
4948adantr 483 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
5044, 49eqtr4d 2861 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
512clsval 21647 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧})
52 uniiun 4984 . . . . . 6 (𝐽 ∩ 𝒫 (𝑋𝑆)) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥
5352difeq2i 4098 . . . . 5 (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥)
5453a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
55 0opn 21514 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5655adantr 483 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝐽)
57 0elpw 5258 . . . . . . 7 ∅ ∈ 𝒫 (𝑋𝑆)
5857a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝒫 (𝑋𝑆))
5956, 58elind 4173 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
60 ne0i 4302 . . . . 5 (∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → (𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅)
61 iindif2 5001 . . . . 5 ((𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅ → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6259, 60, 613syl 18 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6354, 62eqtr4d 2861 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
6450, 51, 633eqtr4d 2868 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
65 difssd 4111 . . . 4 (𝑆𝑋 → (𝑋𝑆) ⊆ 𝑋)
662ntrval 21646 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
6765, 66sylan2 594 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
6867difeq2d 4101 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
6964, 68eqtr4d 2861 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840   cint 4878   ciun 4921   ciin 4922  cfv 6357  Topctop 21503  Clsdccld 21626  intcnt 21627  clsccl 21628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-top 21504  df-cld 21629  df-ntr 21630  df-cls 21631
This theorem is referenced by:  ntrval2  21661  clsdif  21663  cmclsopn  21672  bcth3  23936
  Copyright terms: Public domain W3C validator