Step | Hyp | Ref
| Expression |
1 | | df-rab 3079 |
. . . . . 6
⊢ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)} |
2 | | clscld.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | cldopn 21736 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑧) ∈ 𝐽) |
4 | 3 | ad2antrl 727 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ∈ 𝐽) |
5 | | sscon 4046 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ 𝑧 → (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
6 | 5 | ad2antll 728 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
7 | 2 | topopn 21611 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | | difexg 5200 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝐽 → (𝑋 ∖ 𝑧) ∈ V) |
9 | | elpwg 4500 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∖ 𝑧) ∈ V → ((𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆) ↔ (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆))) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆) ↔ (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆))) |
11 | 10 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → ((𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆) ↔ (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆))) |
12 | 6, 11 | mpbird 260 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ∈ 𝒫 (𝑋 ∖ 𝑆)) |
13 | 4, 12 | elind 4101 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ 𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
14 | 2 | cldss 21734 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (Clsd‘𝐽) → 𝑧 ⊆ 𝑋) |
15 | 14 | ad2antrl 727 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → 𝑧 ⊆ 𝑋) |
16 | | dfss4 4165 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑧)) = 𝑧) |
17 | 15, 16 | sylib 221 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → (𝑋 ∖ (𝑋 ∖ 𝑧)) = 𝑧) |
18 | 17 | eqcomd 2764 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → 𝑧 = (𝑋 ∖ (𝑋 ∖ 𝑧))) |
19 | | difeq2 4024 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑋 ∖ 𝑧) → (𝑋 ∖ 𝑥) = (𝑋 ∖ (𝑋 ∖ 𝑧))) |
20 | 19 | rspceeqv 3558 |
. . . . . . . . . 10
⊢ (((𝑋 ∖ 𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) ∧ 𝑧 = (𝑋 ∖ (𝑋 ∖ 𝑧))) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)) |
21 | 13, 18, 20 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)) |
22 | 21 | ex 416 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥))) |
23 | | simpl 486 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) |
24 | | elinel1 4102 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) → 𝑥 ∈ 𝐽) |
25 | 2 | opncld 21738 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
26 | 23, 24, 25 | syl2an 598 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
27 | | elinel2 4103 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) → 𝑥 ∈ 𝒫 (𝑋 ∖ 𝑆)) |
28 | 27 | adantl 485 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑥 ∈ 𝒫 (𝑋 ∖ 𝑆)) |
29 | 28 | elpwid 4508 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑥 ⊆ (𝑋 ∖ 𝑆)) |
30 | 29 | difss2d 4042 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑥 ⊆ 𝑋) |
31 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑆 ⊆ 𝑋) |
32 | | ssconb 4045 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑋) → (𝑥 ⊆ (𝑋 ∖ 𝑆) ↔ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
33 | 30, 31, 32 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → (𝑥 ⊆ (𝑋 ∖ 𝑆) ↔ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
34 | 29, 33 | mpbid 235 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → 𝑆 ⊆ (𝑋 ∖ 𝑥)) |
35 | 26, 34 | jca 515 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → ((𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
36 | | eleq1 2839 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑋 ∖ 𝑥) → (𝑧 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽))) |
37 | | sseq2 3920 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑋 ∖ 𝑥) → (𝑆 ⊆ 𝑧 ↔ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
38 | 36, 37 | anbi12d 633 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑋 ∖ 𝑥) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧) ↔ ((𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋 ∖ 𝑥)))) |
39 | 35, 38 | syl5ibrcom 250 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) → (𝑧 = (𝑋 ∖ 𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧))) |
40 | 39 | rexlimdva 3208 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧))) |
41 | 22, 40 | impbid 215 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧) ↔ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥))) |
42 | 41 | abbidv 2822 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝑧)} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
43 | 1, 42 | syl5eq 2805 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
44 | 43 | inteqd 4846 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
45 | | difexg 5200 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐽 → (𝑋 ∖ 𝑥) ∈ V) |
46 | 45 | ralrimivw 3114 |
. . . . . 6
⊢ (𝑋 ∈ 𝐽 → ∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) ∈ V) |
47 | | dfiin2g 4924 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) ∈ V → ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
48 | 7, 46, 47 | 3syl 18 |
. . . . 5
⊢ (𝐽 ∈ Top → ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
49 | 48 | adantr 484 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = ∩ {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑧 = (𝑋 ∖ 𝑥)}) |
50 | 44, 49 | eqtr4d 2796 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧} = ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥)) |
51 | 2 | clsval 21742 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑧}) |
52 | | uniiun 4950 |
. . . . . 6
⊢ ∪ (𝐽
∩ 𝒫 (𝑋 ∖
𝑆)) = ∪ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥 |
53 | 52 | difeq2i 4027 |
. . . . 5
⊢ (𝑋 ∖ ∪ (𝐽
∩ 𝒫 (𝑋 ∖
𝑆))) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥) |
54 | 53 | a1i 11 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥)) |
55 | | 0opn 21609 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ∅
∈ 𝐽) |
56 | 55 | adantr 484 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∅ ∈ 𝐽) |
57 | | 0elpw 5227 |
. . . . . . 7
⊢ ∅
∈ 𝒫 (𝑋 ∖
𝑆) |
58 | 57 | a1i 11 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∅ ∈ 𝒫 (𝑋 ∖ 𝑆)) |
59 | 56, 58 | elind 4101 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∅ ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
60 | | ne0i 4235 |
. . . . 5
⊢ (∅
∈ (𝐽 ∩ 𝒫
(𝑋 ∖ 𝑆)) → (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) ≠ ∅) |
61 | | iindif2 4967 |
. . . . 5
⊢ ((𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)) ≠ ∅ → ∩ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥)) |
62 | 59, 60, 61 | 3syl 18 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∩
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥) = (𝑋 ∖ ∪
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))𝑥)) |
63 | 54, 62 | eqtr4d 2796 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) = ∩
𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))(𝑋 ∖ 𝑥)) |
64 | 50, 51, 63 | 3eqtr4d 2803 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)))) |
65 | | difssd 4040 |
. . . 4
⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ 𝑆) ⊆ 𝑋) |
66 | 2 | ntrval 21741 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) = ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
67 | 65, 66 | sylan2 595 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝑆)) = ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆))) |
68 | 67 | difeq2d 4030 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆))) = (𝑋 ∖ ∪ (𝐽 ∩ 𝒫 (𝑋 ∖ 𝑆)))) |
69 | 64, 68 | eqtr4d 2796 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) |