MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval2 Structured version   Visualization version   GIF version

Theorem clsval2 21755
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))

Proof of Theorem clsval2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3079 . . . . . 6 {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)}
2 clscld.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
32cldopn 21736 . . . . . . . . . . . 12 (𝑧 ∈ (Clsd‘𝐽) → (𝑋𝑧) ∈ 𝐽)
43ad2antrl 727 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝐽)
5 sscon 4046 . . . . . . . . . . . . 13 (𝑆𝑧 → (𝑋𝑧) ⊆ (𝑋𝑆))
65ad2antll 728 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ⊆ (𝑋𝑆))
72topopn 21611 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → 𝑋𝐽)
8 difexg 5200 . . . . . . . . . . . . . 14 (𝑋𝐽 → (𝑋𝑧) ∈ V)
9 elpwg 4500 . . . . . . . . . . . . . 14 ((𝑋𝑧) ∈ V → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
107, 8, 93syl 18 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
1110ad2antrr 725 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ((𝑋𝑧) ∈ 𝒫 (𝑋𝑆) ↔ (𝑋𝑧) ⊆ (𝑋𝑆)))
126, 11mpbird 260 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ 𝒫 (𝑋𝑆))
134, 12elind 4101 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
142cldss 21734 . . . . . . . . . . . . 13 (𝑧 ∈ (Clsd‘𝐽) → 𝑧𝑋)
1514ad2antrl 727 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧𝑋)
16 dfss4 4165 . . . . . . . . . . . 12 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1715, 16sylib 221 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
1817eqcomd 2764 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → 𝑧 = (𝑋 ∖ (𝑋𝑧)))
19 difeq2 4024 . . . . . . . . . . 11 (𝑥 = (𝑋𝑧) → (𝑋𝑥) = (𝑋 ∖ (𝑋𝑧)))
2019rspceeqv 3558 . . . . . . . . . 10 (((𝑋𝑧) ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) ∧ 𝑧 = (𝑋 ∖ (𝑋𝑧))) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2113, 18, 20syl2anc 587 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥))
2221ex 416 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) → ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
23 simpl 486 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝐽 ∈ Top)
24 elinel1 4102 . . . . . . . . . . . 12 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥𝐽)
252opncld 21738 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
2623, 24, 25syl2an 598 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑋𝑥) ∈ (Clsd‘𝐽))
27 elinel2 4103 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → 𝑥 ∈ 𝒫 (𝑋𝑆))
2827adantl 485 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ∈ 𝒫 (𝑋𝑆))
2928elpwid 4508 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥 ⊆ (𝑋𝑆))
3029difss2d 4042 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑥𝑋)
31 simplr 768 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆𝑋)
32 ssconb 4045 . . . . . . . . . . . . 13 ((𝑥𝑋𝑆𝑋) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3330, 31, 32syl2anc 587 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑥 ⊆ (𝑋𝑆) ↔ 𝑆 ⊆ (𝑋𝑥)))
3429, 33mpbid 235 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → 𝑆 ⊆ (𝑋𝑥))
3526, 34jca 515 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)))
36 eleq1 2839 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ (Clsd‘𝐽)))
37 sseq2 3920 . . . . . . . . . . 11 (𝑧 = (𝑋𝑥) → (𝑆𝑧𝑆 ⊆ (𝑋𝑥)))
3836, 37anbi12d 633 . . . . . . . . . 10 (𝑧 = (𝑋𝑥) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥))))
3935, 38syl5ibrcom 250 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))) → (𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4039rexlimdva 3208 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥) → (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)))
4122, 40impbid 215 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧) ↔ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)))
4241abbidv 2822 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∣ (𝑧 ∈ (Clsd‘𝐽) ∧ 𝑆𝑧)} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
431, 42syl5eq 2805 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
4443inteqd 4846 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
45 difexg 5200 . . . . . . 7 (𝑋𝐽 → (𝑋𝑥) ∈ V)
4645ralrimivw 3114 . . . . . 6 (𝑋𝐽 → ∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V)
47 dfiin2g 4924 . . . . . 6 (∀𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) ∈ V → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
487, 46, 473syl 18 . . . . 5 (𝐽 ∈ Top → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
4948adantr 484 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = {𝑧 ∣ ∃𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑧 = (𝑋𝑥)})
5044, 49eqtr4d 2796 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧} = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
512clsval 21742 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑧 ∈ (Clsd‘𝐽) ∣ 𝑆𝑧})
52 uniiun 4950 . . . . . 6 (𝐽 ∩ 𝒫 (𝑋𝑆)) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥
5352difeq2i 4027 . . . . 5 (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥)
5453a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
55 0opn 21609 . . . . . . 7 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5655adantr 484 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝐽)
57 0elpw 5227 . . . . . . 7 ∅ ∈ 𝒫 (𝑋𝑆)
5857a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ 𝒫 (𝑋𝑆))
5956, 58elind 4101 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)))
60 ne0i 4235 . . . . 5 (∅ ∈ (𝐽 ∩ 𝒫 (𝑋𝑆)) → (𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅)
61 iindif2 4967 . . . . 5 ((𝐽 ∩ 𝒫 (𝑋𝑆)) ≠ ∅ → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6259, 60, 613syl 18 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥) = (𝑋 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))𝑥))
6354, 62eqtr4d 2796 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))) = 𝑥 ∈ (𝐽 ∩ 𝒫 (𝑋𝑆))(𝑋𝑥))
6450, 51, 633eqtr4d 2803 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
65 difssd 4040 . . . 4 (𝑆𝑋 → (𝑋𝑆) ⊆ 𝑋)
662ntrval 21741 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
6765, 66sylan2 595 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘(𝑋𝑆)) = (𝐽 ∩ 𝒫 (𝑋𝑆)))
6867difeq2d 4030 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))) = (𝑋 (𝐽 ∩ 𝒫 (𝑋𝑆))))
6964, 68eqtr4d 2796 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2735  wne 2951  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  cdif 3857  cin 3859  wss 3860  c0 4227  𝒫 cpw 4497   cuni 4801   cint 4841   ciun 4886   ciin 4887  cfv 6339  Topctop 21598  Clsdccld 21721  intcnt 21722  clsccl 21723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-top 21599  df-cld 21724  df-ntr 21725  df-cls 21726
This theorem is referenced by:  ntrval2  21756  clsdif  21758  cmclsopn  21767  bcth3  24036
  Copyright terms: Public domain W3C validator